

SAMUEL STYLES

Student # 135743 / samuel.styles93@gmail.com

BACHELOR OF SCIENCE

Games Programming

3D Fur generation

Rendering realistic fur in Unity using shell texturing.

MODULE 6GST0XF101.2 - Bachelor’s thesis

Farhan E., Siorak N.

Word Count: 11’059

19.07.2024

SAE INSTITUTE GENEVA

mailto:samuel.styles93@gmail.com

Bachelor’s thesis - MODULE 6GST0XF101.2

I, Samuel Styles, certify that I have personally written this Bachelor thesis.

I also certify that I have not resorted to plagiarism and have conscientiously and clearly

mentioned all elements borrowed from others.

Geneva, 19 July 2024

Bachelor’s thesis - MODULE 6GST0XF101.2

Foreword

After multiple years of studies in commercial-related fields, I wanted to better understand the

world and the way it worked; keep my mind active; accumulate knowledge and stay physically active.

For those reasons I decided to change paths and go towards mechanical engineering.

During my studies as a mechatronics apprentice, I found exactly what I had wished for, I

discovered so much about the world: physics, mechanics, electricity, electronics, thermodynamics and

so much more. At that point in my life, my entire being, up until then only reproducing thoughtless

tasks, was finally fully stimulated. But as every dream comes to an end, the actual daily work was only

stimulating on rare occasions. Therefore, I decided to continue training and accumulate more

knowledge by starting a federal diploma of higher education in mechatronics engineering. Regrettably,

due to productivity requirements, tight deadlines, and finally physical exhaustion, I ended up injuring my

back and having to stop the work and studies which I was so passionate about. At that moment I felt as

if my life had been driven straight into a brick wall, but it gave me time to really think about what my

principal motivation was.

Before entering the SAE, I started work experience as a game programmer at

DamaDamaGames, a game development company in Lausanne. At that moment I really discovered my

love for programming and my passion for visual effects and shader. So, I joined the SAE to have an

academic training and understanding of what game programming really was. In my second year of

studies, I worked on two projects that orientated me towards graphics programming: creating and

optimising a handmade CPU Rasterizer from scratch and creating an OpenGL rendering engine. Arriving

in my third year, my objective was clear, I wanted to work on a subject related to 3D fur rendering in a

Real-time environment because it is visually pleasing but also technically interesting in terms of

optimisation possibilities.

Bachelor’s thesis - MODULE 6GST0XF101.2

Acknowledgment

I would like to express my deepest gratitude to Elias Farhan, Head of Game Programming, for his

invaluable guidance, technical expertise, and support throughout the development of my major project.

His mentorship has been invaluable in shaping my skills and understanding in the field.

I am also grateful to Nicolas Siorak, my Bachelor’s teacher, for his insightful feedback and

assistance during the writing process. His constructive criticism and encouragement have been

extremely useful in refining my academic work.

I extend my heartfelt thanks to the staff of SAE Institute in Geneva for their warmth, hospitality,

and accessibility. Their dedication to fostering a conducive learning environment has greatly enriched

my educational experience.

Furthermore, I am immensely grateful to my fellow students, Fabian Huber and Johanna

Palminha, for their support and collaboration during challenging times and to Julia Styles for her

dedication and time towards the proofreading of this thesis. Their contributions have significantly

enhanced my journey through this programme.

Lastly, I would like to acknowledge the collective efforts of all individuals who have contributed

to my academic and personal growth.

Bachelor’s thesis - MODULE 6GST0XF101.2

Abstract

This study addresses visual issues with shell texturing in real-time environments, exploring

improvements using HLSL shaders in Unity. Through AAA game examples, fur rendering techniques, and

expert interviews, the research validated the project's relevance. Quantitative tests highlighted GPU

frame time and memory usage as crucial optimization factors. The findings confirm real-time fur

rendering feasibility and underscore the importance of context-specific shader design. Future research

could explore other game engines, custom rendering engine development, and alternative methods,

providing pathways for further academic inquiry.

Key words: Shell-Texturing, Video game, Fur rendering, Unity, URP, HLSL, Shaders, Graphics

programming.

Bachelor’s thesis - MODULE 6GST0XF101.2

Table of Content

1. Introduction ... 1

2. State of the Art ... 5

2.1 Definitions .. 5

2.2 Current Fur rendering techniques ... 10

2.3 Shell Texturing in the gaming industry .. 16

2.4 Unity Shell Texturing Project ... 20

2.5 Conclusion .. 23

3. Qualitative Analysis .. 24

3.1 Interviews... 24

3.2 Project Analysis .. 25

3.3 Conclusion .. 29

4. Test Protocol .. 30

4.1 Definition of the used metrics ... 30

4.2 Measurement Tools ... 33

4.3 Conclusion .. 38

5. Practical Project ... 39

5.1 Development environment .. 39

5.2 Limitations.. 41

5.3 Projects procedure ... 42

5.4 Technical implementation ... 47

5.5 Conclusion .. 58

6. Quantitative Analysis ... 59

6.1 Measurement conditions ... 60

6.2 Project Measurements ... 60

6.3 Project Analysis .. 71

6.4 Conclusion .. 73

7. Conclusion and further research ... 74

8. References ... 76

8.1 Articles ... 76

8.2 Bibliography ... 77

Bachelor’s thesis - MODULE 6GST0XF101.2

8.3 Filmography ... 77

8.4 Webography ... 78

9. Figures .. 85

10. Appendices ... 88

Appendix A: Interview of David Sena ... 88

Appendix B: Interview of ChatGPT ... 89

Appendix C: Shell_Original.shader code .. 91

Appendix D: Shell.shader code .. 93

Appendix E: SimpleShell.cs code .. 96

Appendix F: SimpleCameraController.cs code ... 99

Appendix G: HLSLGeom.shader code .. 100

Appendix H: Fur.hlsl code .. 102

Appendix I: Common.hlsl code .. 105

Appendix J: HLSLComplex.shader code ... 106

Appendix K: FurComplex.hlsl code .. 108

Appendix L: HLSLGeom_Controller.cs script .. 111

Appendix M: HLSLComplex_Controller.cs script.. 112

Appendix N: FurSceneManager.cs script ... 113

Appendix O: SO_SceneData.cs script ... 115

Appendix P: DataExtractor.cs script ... 115

Appendix Q: Extracted Data spreadsheet .. 116

Bachelor’s thesis - MODULE 6GST0XF101.2

Glossary

2D:

A two-dimensional space is a mathematical space with two dimensions, meaning points have

two degrees of freedom: their locations can be locally described with two coordinates, or they can move

in two independent directions.

3D:

A 3D environment is a three-dimensional representation of geometric data that resembles the

real world. It is simply a digital setting or background created with computer graphics software. It can be

an indoor or outdoor location with realistic or non-realistic objects that give you visual sensations.

AAA:

In the video game industry, AAA (Triple-A) is an informal classification used to classify video

games produced and distributed by a mid-sized or major publisher, which typically have higher

development and marketing budgets than other tiers of games.

ACES tonemapping:

Academy Color Encoding System (ACES) tonemapping can (unsurprisingly) be described as filmic.

This means that it applies a sigmoid-style curve in a logarithmic space to produce the tone mapping.

Further, it performs the operations mostly independently on the color channels rather than operating

strictly on luminance like many other operators. This characteristic makes the operator naturally

desaturate when it reaches the limits of the present adaptation level. Highlights gently roll toward

white, and shadows gently roll toward black.

Bachelor’s thesis - MODULE 6GST0XF101.2

AI:

Artificial intelligence (AI) is the simulation of human intelligence processes by machines,

especially computer systems. Specific applications of AI include expert systems, natural language

processing, speech recognition and machine vision.

API:

Application Programming Interface, the part of a technical solution exposed for use by a user

application.

Bloom:

Bloom (sometimes referred to as light bloom or glow) is a computer graphics effect used in

video games, demos, and high-dynamic-range rendering (HDRR) to reproduce an imaging artifact of real-

world cameras. The effect produces fringes (or feathers) of light extending from the borders of bright

areas in an image, contributing to the illusion of an extremely bright light overwhelming the camera or

eye capturing the scene. It became widely used in video games after an article on the technique was

published by the authors of Tron 2.0 in 2004.

C++:

C++ is a cross-platform language that can be used to create high-performance applications. C++

was developed by Bjarne Stroustrup, as an extension to the C language. C++ gives programmers a high

level of control over system resources and memory.

Bachelor’s thesis - MODULE 6GST0XF101.2

C#:

C# (C Sharp) is a general-purpose high-level programming language supporting multiple

paradigms. C# encompasses static typing, strong typing, lexically scoped, imperative, declarative,

functional, generic, object-oriented (class-based), and component-oriented programming disciplines.

CG:

Cg (short for C for Graphics) and High-Level Shader Language (HLSL) are two names given to a

high-level shading language developed by Nvidia and Microsoft for programming shaders. Cg/HLSL is

based on the C programming language and although they share the same core syntax, some features of

C were modified, and new data types were added to make Cg/HLSL more suitable for programming

graphics processing units.

CPU:

A central processing unit (CPU) is a hardware component that's the core computational unit in a

server. Servers and other smart devices convert data into digital signals and perform mathematical

operations on them.

Direct X:

DirectX is a suite of multimedia technologies required by many Windows games. If your PC does

not have the right version of DirectX installed (the product box should tell you which one you need),

your game might not work properly.

Geometry Shader:

The Geometry Shader (GS) stage processes entire primitives: triangles, lines, and points, along

with their adjacent vertices. It is useful for algorithms including Point Sprite Expansion, Dynamic Particle

Systems, and Shadow Volume Generation. It supports geometry amplification and de-amplification.

Bachelor’s thesis - MODULE 6GST0XF101.2

GPU:

Graphics Processing Unit, a specialised electronic circuit dedicated to accelerating visual

processing algorithms.

Global illumination:

Global illumination (GI), or indirect illumination, is a group of algorithms used in 3D computer

graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take into account

not only the light that comes directly from a light source (direct illumination), but also subsequent cases

in which light rays from the same source are reflected by other surfaces in the scene, whether reflective

or not (indirect illumination).

GLSL:

OpenGL Shading Language (GLSL) is a high-level shading language with a syntax based on the C

programming language. It was created by the OpenGL ARB (OpenGL Architecture Review Board) to give

developers more direct control of the graphics pipeline without having to use ARB assembly language or

hardware-specific languages.

HDRP:

The High-Definition Render Pipeline (HDRP) is a high-fidelity Scriptable Render Pipeline built by

Unity to target modern (Compute Shader compatible) platforms.

HLSL:

The High-Level Shader Language (HLSL) is a proprietary shading language developed by

Microsoft for the Direct3D 9 API to augment the shader assembly language and went on to become the

required shading language for the unified shader model of Direct3D 10 and higher.

Bachelor’s thesis - MODULE 6GST0XF101.2

IDE:

 An integrated development environment (IDE) is a software application that helps

programmers develop software code efficiently. It increases developer productivity by combining

capabilities such as software editing, building, testing, and packaging in an easy-to-use application.

LOD:

In computer graphics, level of detail (LOD) refers to the complexity of a 3D model

representation. LOD can be decreased as the model moves away from the viewer or according to other

metrics such as object importance, viewpoint-relative speed or position.

Pass:

A Pass is the fundamental element of a Shader object. It contains instructions for setting the

state of the GPU, and the shader programmes that run on the GPU. Simple Shader objects might contain

only a single Pass, but more complex shaders can contain multiple Passes.

Physically based rendering (PBR):

Physically based rendering (PBR) is a computer graphics approach that aims at rendering images

in a way that models the lights and surfaces with optics in the real world. It is often referred to as

"Physically Based Lighting" or "Physically Based Shading".

Bachelor’s thesis - MODULE 6GST0XF101.2

Post-processing:

The term post-processing (or postproc for short) is used in the video and film industry for

quality-improvement image processing (specifically digital image processing) methods used in video

playback devices, such as stand-alone DVD-Video players; video playing software; and transcoding

software. It is also commonly used in real-time 3D rendering (such as in video games) to add additional

effects.

Prefab:

Unity’s Prefab system is used to create, configure, and store a GameObject complete with all its

components, property values, and child GameObjects as a reusable Asset.

Real-Time:

A real-time system has been described as one which controls an environment by receiving data,

processing them, and returning the results sufficiently quickly.

RenderDoc:

RenderDoc is a free and open-source frame debugger that can be used to analyse single frames

generated by other software programmes such as games.

Render Pipeline:

The computer graphics pipeline, also known as the rendering pipeline or graphics pipeline, is a

framework within computer graphics that outlines the procedures necessary for transforming a three-

dimensional scene into a two-dimensional representation on a screen.

Bachelor’s thesis - MODULE 6GST0XF101.2

Rim light:

A rim light is placed behind a subject that exposes the outline or rim of the subject with light.

This lighting highlights the contours of a subject and creates a dramatic and mysterious effect.

Script:

A script is a sequence of instructions that can be executed by a computer or programming

language. A script is a common type of computer programme, its defining characteristic being that it

does not have to be compiled in advance of being run. It is interpreted and executed in real time.

SRP:

Unity’s Scriptable Render Pipeline (SRP) is a feature used to control rendering via C# scripts. SRP

is the technology that underpins the Universal Render Pipeline (URP) and the High Definition Render

Pipeline (HDRP).

Shader:

In computer graphics, a shader is a computer programme that calculates the appropriate levels

of light, darkness, and colour during the rendering of a 3D scene—a process known as shading. Shaders

have evolved to perform a variety of specialised functions in computer graphics special effects and video

post-processing, as well as general-purpose computing on graphics processing units.

Shader Graph:

Shaders can be built visually with Shader Graph Instead of writing code, nodes can be created

and connected in a graph framework. Shader Graph gives instant feedback that reflects changes, and it

is simple enough for users who are new to shader creation.

Bachelor’s thesis - MODULE 6GST0XF101.2

Shell texturing:

Shell texturing involves creating mesh layers, then using one or more alpha textures to create

the effect of volume. It looks quite good when used for rendering fur and can look good for grass as

well.

SubShader:

SubShaders are useful for defining different GPU settings and shader programmes for different

hardware, render pipelines, and runtime settings. Some Shader objects contain only a single SubShader;

others contain multiple SubShaders to support a range of different configurations.

Subsurface scattering:

Subsurface scattering (SSS), also known as subsurface light transport (SSLT),[1] is a mechanism

of light transport in which light that penetrates the surface of a translucent object is scattered by

interacting with the material and exits the surface potentially at a different point.

Tracy:

Tracy is a real time, nanosecond resolution frame profiler that can be used for remote or

embedded telemetry of your application. It can profile CPU (C++, Lua), GPU (OpenGL, Vulkan) and

memory. It can also display locks held by threads and their interactions with each other.

UI:

User interface (UI) design is the process designers use to build easy-to-use and pleasurable

interfaces in software or computerised devices.

Bachelor’s thesis - MODULE 6GST0XF101.2

Unity:

Unity is a cross-platform game engine developed by Unity Technologies […]. It is particularly

popular for iOS and Android mobile game development, is considered easy to use for beginner

developers, and is popular for indie game development.

Unreal Engine:

Unreal Engine (UE) is a series of 3D computer graphics game engines developed by Epic Games.

Unreal Engine is written in C++ and features a high degree of portability, supporting a wide range of

desktop, mobile, console, and virtual reality platforms.

URP:

The Universal Render Pipeline (URP) is a prebuilt Scriptable Render Pipeline, made by Unity. URP

provides artist-friendly workflows that let you quickly and easily create optimised graphics across a

range of platforms, from mobile to high-end consoles and PCs.

UV:

UV mapping is the 3D modelling process of projecting a 3D model's surface to a 2D image for

texture mapping. The letters "U" and "V" denote the axes of the 2D texture because "X", "Y", and "Z" are

already used to denote the axes of the 3D object in model space, while "W" (in addition to XYZ) is used

in calculating quaternion rotations, a common operation in computer graphics.

Vignetting:

In photography and optics, vignetting is a reduction of an image's brightness or saturation

toward the periphery compared to the image centre. The word vignette, from the same root as vine,

originally referred to a decorative border in a book.

Bachelor’s thesis - MODULE 6GST0XF101.2

VSync:

Short for vertical sync, VSync is the graphics technology responsible for synchronizing the frame

rate of a game to the refresh rate of a monitor. This synchronization delivers smooth, uninterrupted

gameplay for graphics-heavy 3D games.

Bachelor’s thesis - MODULE 6GST0XF101.2

1

1. Introduction

Dark Souls III the “fastest selling title in the history of Bandai Namco Entertainment America”

(Porter, 2017) was released with graphical issues regarding fur. Four years later, Genshin Impact

“reported to have the highest revenue ever for a game in its first year” (Tyler, 2021) is released with the

same problems when rendering grass. This observation is the reason that motivates this research

around what is commonly known as Shell-Texturing.

With the constant improvement of hardware, the last decade has seen major innovations in the

way graphics are rendered. Many technologies are currently used and developed throughout diverse

domains that require the use of graphical illustrations. From the gaming industry that must render an

image in a few milliseconds or the visual effects and film industry that will tend to expose the most

perfect image possible, all require their own specific hardware, software, and tools. Regarding the

generation of fur, it is necessary to differentiate the practices related to each domain. In the film

industry, where images are pre-calculated and the experience is already scripted, there is no need to

meet real-time requirements, thus enabling the possibility of pushing the boundaries in terms of visual

rendering by directly sculpting or modelling hair or fur with a high level of detail. The necessary

adjustments, such as physical interactions, can be calculated during long periods of time without

impacting the way it is perceived by the viewer.

Bachelor’s thesis - MODULE 6GST0XF101.2

2

Figure 1 - Hair and fur Render Time on characters. (Edgardlop, 2013)

On the other hand, the gaming industry requires the image to change dynamically according to

events such as the user’s input.

Bachelor’s thesis - MODULE 6GST0XF101.2

3

That significant difference adds a layer of complexity when it comes to fur rendering. The

outcome is that, in a real-time environment, rendering hair or fur is either created with a complex mesh

but is intended to be static in game, meaning that there are no physical interactions with the fur or hair,

or with simple planes or guides, where visual fidelity is discarded beforehand but physical interactions

are possible. In both scenarios there is a trade-off between visual quality and fidelity of physical

behaviour. This trade-off is precisely what will be measured and the main reason for the research that

will be pursued in this thesis.

The primary goal is to develop a Unity project using the URP render pipeline to implement Shell-

Texturing through HLSL shaders. Following this initial step, the same shader will be employed across

different scenes of varying complexity. Subsequently, an executable will be generated, exported, and

tested on multiple platforms to collect data for comparative analysis. The overarching goal is to enhance

the shader project by leveraging the gathered data, thus refining it, and presenting an optimised setup

that carefully balances trade-offs for optimal performance and visual fidelity.

The plan will start with the state of the art, providing a comprehensive definition and precise

explanations of the key terms involved. Following this, a paragraph will delve into various examples of

use of the shell-texturing technique within the AAA game industry.

To conclude, a brief introduction to the project and its procedure will be done. Once the

foundational overview and historical context are established, the project will be described in detail

including the metrics, software, hardware, procedure, and technical implementation. Lastly an

examination of the project’s results will be conducted leading to the final chapter of this thesis, the

paths to further research.

Bachelor’s thesis - MODULE 6GST0XF101.2

4

The initial approach was to create three projects: a Unity projects using the URP pipeline to

mimic Genshin Impact’s style; an Unreal Engine project to approach the rendering style of Dark Souls III;

a DirectX12 rendering engine to implement necessary techniques by hand and have better control and

understanding of the entire pipeline. This approach proved to be too challenging and had to be scaled

back to fit into the time available. The Unreal Engine project was therefore abandoned since it was more

oriented towards technical art than graphics programming skills. Regarding the DirectX12 project, after

beginning with tutorials and a simple triangle rendering project, the amount of time required was

evaluated and projected to be overly time-consuming. Thus, making it impossible to fulfil in an

acceptable manner. For these reasons, the project focuses on the Unity version and its seamless

exportation to multiple platforms. Delving deeply into techniques within Unity's Universal Render

Pipeline (URP), will facilitate a comprehensive grasp and practical application of graphics programming

principles.

Bachelor’s thesis - MODULE 6GST0XF101.2

5

2. State of the Art

2.1 Definitions

2.1.1 Fur in video games

Fur in the context of video games refers to the simulated representation of animal pelage,

providing a lifelike and visually compelling aspect to virtual creatures. It involves the depiction of dense

hair-like structures on the surface of characters or objects, enhancing their realism and adding depth to

the gaming experience. Fur rendering techniques aim to capture the intricate details of fur, such as its

length, colour, and overall appearance, contributing to the aesthetics of the virtual world (Kajiya & von

Herzen, 1984).

Figure 2 - Fur generation example from Real-Time Fur over Arbitrary Surfaces. (Lengyel et al., 2001)

Bachelor’s thesis - MODULE 6GST0XF101.2

6

When referring to fur, it is important to exclude aspects related to human hair or hairstyles,

grooming, and similar elements. While these aspects are essential in various digital representations, the

intention here is to dive deeply into the technical and artistic challenges associated with replicating the

unique characteristics of animal fur.

Figure 3 - 80.lv student hair for games from Greg Mourino. (80.lv, 2018) & Detective Pikachu film caption.
 (Machkovech, 2019)

By setting aside discussions on human hair, the exploration can be focused on the intricacies of

rendering fur in a gaming environment. This exclusion allows for a more concentrated examination of

the complexities involved in simulating animal pelage, providing a clear understanding of the specialised

field of fur rendering in video game development.

Bachelor’s thesis - MODULE 6GST0XF101.2

7

2.1.2 Realistic rendering

Rendering is the process of generating an image from a model by simulating how light interacts

with surfaces. It involves calculations to determine the colour, shadow, texture, and visual attributes of

the objects in a scene. Rendering is essential in computer graphics for creating realistic or stylised visuals

in various applications like animation, gaming, and virtual reality (Shirley et al, 2021).

Figure 4 - Realistic Dog Portrait: Experimenting with Real-Time Fur. (80.lv, 2021)

When referring to realistic rendering, the focus lies on accurately simulating how light behaves

in the real world to create lifelike images. This involves complex calculations to model light interactions

such as reflection, refraction, and absorption on surfaces. By meticulously calculating these phenomena,

realistic rendering aims to produce visuals that closely resemble how objects appear in the physical

environment, adding depth, detail, and authenticity to computer-generated imagery (Adobe, n.d.;

Chaos, n.d.; Bluebird International, n.d.).

Bachelor’s thesis - MODULE 6GST0XF101.2

8

2.1.3 Unity

Unity is a powerful and widely used game engine that allows creators to build interactive

experiences for various platforms. It provides a user-friendly suite of tools for designing, prototyping,

and deploying games and interactive content. Since 2015, Unity has developed versions of its engine,

each with its own set of tools and improvements. These versions are archived and available on their

website ("Download archive”, n.d.-b).

Figure 5 - Unity download archive. (Unity Technologies, n.d.-b)

Since Unity is continuously improving (Figure 5), these versions are categorised in two ways:

● Tech Stream: considered as unsafe:

“It is for creators who value getting earlier access to new features to prepare for future

projects. These versions are primarily recommended for the preproduction, discovery,

and prototyping phases of development, but they can be used to get ready for the next

LTS by enabling earlier feature adoption” (“LTS vs Tech Stream: Choose the right Unity

release for you.”, n.d.-d).

Bachelor’s thesis - MODULE 6GST0XF101.2

9

● Long-Term Support: considered safe: “It is the release for creators who value maximum

stability and support for their next project” (“LTS vs Tech Stream: Choose the right Unity

release for you.”, n.d.-d).

Figure 6 - Unity Hub 3.7.0 Installs screenshot, (Styles, 2024)

2.1.3.1 Unity’s graphics pipelines and their differences:

Regarding the graphics pipelines, there are three main setups:

● BRP: “This pipeline offers broad compatibility and ease of use, suitable for most

projects. It provides a balance between visual quality and performance, with features

like dynamic lighting, shadows, and post-processing effects.” (“Using the Built-in Render

Pipeline”, n.d.-g).

● URP: “Formerly known as the Lightweight Render Pipeline (LWRP), URP is optimised for

performance on a wide range of platforms, including mobile devices and low-end

hardware. It emphasises efficiency and scalability while still supporting many modern

rendering features.” (“Universal Render Pipeline overview”, n.d.-e).

Bachelor’s thesis - MODULE 6GST0XF101.2

10

● HDRP:

“HDRP is designed for projects requiring high visual fidelity, such as AAA games or

advanced architectural visualization. It relies on cutting-edge rendering techniques like

physically based rendering, real-time global illumination, subsurface scattering, and

high-quality post-processing effects to achieve stunning visuals.” ("Create high-quality

graphics and stunning visuals”, n.d.-a).

Each pipeline offers different trade-offs in terms of visual quality, performance, and supported

features. Choosing the correct pipeline to use is crucial according to the desired project.

2.2 Current Fur rendering techniques

2.2.1 Shell-Texturing

The Shell-Texturing technique focuses on creating multiple shells around the object allowing for

efficient and realistic rendering of fur without the need to individually model each hair strand. This

method plays a crucial role in achieving convincing fur effects in video games, enriching the visual

narrative, and pushing the boundaries of graphical realism (Döllner, Hinkenjann, & Wiemker, 2006).

Figure 7 – A shell-based fur strand example. (GiM, n.d.)

This method stands out for its remarkable efficiency in rendering fur, as it cleverly constructs a

shell around the object. This approach eliminates the need to model each individual hair strand, making

Bachelor’s thesis - MODULE 6GST0XF101.2

11

it a highly optimised solution for various applications, especially in the context of video games (Döllner,

Hinkenjann, & Wiemker, 2006).

Figure 8 - Visualisation of shells on low-poly mesh. (GiM, n.d.)

However, it is essential to acknowledge that while Shell-Texturing excels in terms of

optimisation, it does come with certain visual trade-offs that are related to the camera’s perspective.

Depending on the viewing angle and distance, some imperfections may become apparent, impacting the

overall visual quality. Despite these considerations, the Shell-Texturing technique remains a powerful

tool in terms of graphical rendering, offering a compelling balance between performance and aesthetics.

(XBDEV.net, n.d.; NVIDIA, n.d.; Kajiya & Lischinski, 1993; “Fur shader”, n.d.-c; Lengyel et al., 2001).

Figure 9 - Example of coloured Shell-based fur. (Afanasev, 2018)

Bachelor’s thesis - MODULE 6GST0XF101.2

12

2.2.2 Fin

The fin technique consists in generating extra geometry inside a triangle, composition of

vertices, and extruding what is commonly referred to as a fin, to later apply a 2D texture map on that

extruded part.

Figure 10 - Illustration of fin extrusion. (Lengyel et al., 2001)

As explained by Lengyel & al in 2001 in the paper Real-Time Fur over Arbitrary Surfaces:

“We place “fins” normal to the surface and render these using conventional 2D texture maps

sampled from the volume texture in the direction of hair growth. The method generates convincing

imagery of fur at interactive rates for models of moderate complexity. Further-more, the scheme allows

real-time modification of viewing and lighting conditions, as well as local control over hair color, length,

and direction, this technique already allowed its users to have a lot of control over the result.” (Lengyel

et al., 2001)

Bachelor’s thesis - MODULE 6GST0XF101.2

13

Nvidia later published a white paper about this technique, improving it thanks to graphics

programming modernization and DirectX10 allowing the use of geometry shaders as mentioned in

Nvidia’s white paper: “Fins are rendered by creating new geometry per frame along the silhouette edges

of a mesh. Before DirectX 10 this required adding degenerate triangles to the mesh at every edge but

now fins can be generated efficiently using the Geometry Shader.” (Tariq, 2007)

Figure 11 - Fin generation example and illustration. (Tariq, 2007)

Bachelor’s thesis - MODULE 6GST0XF101.2

14

2.2.3 Polygon

The polygon method consists in manually positioning planes or polygons to later project 2D

textures on them to obtain hair or fur.

Figure 12 - Polygonal hair example from The Last of Us. (Imgur, n.d.)

On the image above 2D planes (Figure 12, right), a combination of few vertices, were manually

placed on the character’s head so that each hair strand could be coloured afterwards (Figure 12, left)

This technique is used in video games due to its very efficient results. The full process is

explained on the YouTube channel CG Cookie - Unity Training (CG Cookie – Unity Training, n.d.).

Bachelor’s thesis - MODULE 6GST0XF101.2

15

2.2.4 Geometry

One of the common usages of dynamic geometry creation in real-time is for grass generation in

games. Although grass does not have the same physical properties as hair or fur, it probably needs to be

at least as optimal since it often covers considerably more space in games than fur (White, 2008).

Figure 13 - Vertex shader with adaptive mesh according to LOD. (GDCVault, n.d.)

Procedural Grass in 'Ghost of Tsushima' is a conference where the developers cleverly generated

grass with relatively simple geometry. The grass adapts its geometry according to the distance of the

camera. On the left side of the image above (Figure 13), the mesh is subdivided into 15 vertices for more

detail when the camera is close. On the right side, the mesh is rendered with fewer vertices since the

distance of the camera does not require as many details to seem visually accurate (GDC, 2022).

Bachelor’s thesis - MODULE 6GST0XF101.2

16

2.3 Shell Texturing in the gaming industry

2.3.1 Shadow of Colossus

The first example of the use of a shell texturing system in a AAA game was Shadow of Colossus,

“a 2005 action-adventure game developed by Japan Studio and Team Ico, and published by Sony

Computer Entertainment for the PlayStation 2.” (“Shadow of the Colossus”, 2024.-a).

Figure 14 - Shadow of Colossus in game caption of the player looking at a Colossus. (Froyok, n.d.)

In Shadow of Colossus, the Shell-Texturing was used for some of the colossuses’ fur. Léna Piquet

, known under the pseudonym Froyok, did a breakdown that covers aspects going from the number of

layers to the direction of the fur according to the mesh. Piquet’s blog also gives a translation of an

interview, originally in Japanese, with the team that created the game. (Froyok, n.d.)

https://en.wikipedia.org/wiki/Action-adventure_game
https://en.wikipedia.org/wiki/Japan_Studio
https://en.wikipedia.org/wiki/Team_Ico
https://en.wikipedia.org/wiki/Sony_Computer_Entertainment
https://en.wikipedia.org/wiki/Sony_Computer_Entertainment
https://en.wikipedia.org/wiki/PlayStation_2

Bachelor’s thesis - MODULE 6GST0XF101.2

17

2.3.2 Viva Piñata

“Viva Piñata was released in 2006 and created by Xbox Game Studios and Rare” (“Viva Piñata”,

2023).

Figure 15 - Viva Piñata in Game Caption. (NBC News, 2006)

In Viva Piñata, shell texturing was used to simulate the paper-like fur and the environment’s

grass. Unfortunately, no information about the engine and technology used for its creation was found.

Bachelor’s thesis - MODULE 6GST0XF101.2

18

2.3.3 Dark Souls 3

Dark Souls III, produced by FromSoftware and published by Bandai Namco Entertainment in

2016 (“Dark Souls III”, 2020), is a reference to demonstrate that shell texturing is used in a game with

realistic graphics.

Figure 16 - Dark Souls III Wolf boss (Sif). (Creswell, 2021)

According to a souls modding community forum, the engine used by FromSoftware was called

Dantelion and it is also proprietary. The only information gathered on its development is that it relied on

third party software such as the Havok engine for physics, Fmod for audio. Any information directly

related to the fur rendering does not seem available (Souls modding, n.d.).

Bachelor’s thesis - MODULE 6GST0XF101.2

19

2.3.4 Genshin Impact

The most relevant game to point out for this project is undoubtedly Genshin Impact since it is a

more recent example of a game where Shell texturing is used (“Genshin Impact”, 2024.-d).

Figure 17 - Genshin impact illustration. (For The Win, 2022)

This game was created by miHoYo and published in 2020. This reference is an example of the

use of shell texturing to render grass and fur in a stylised graphical environment.

Figure 18 - In-game caption of Genshin Impact. (X (formerly Twitter), 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

20

The use of Unity as the game engine in Genshin Impact ([ANSWERED], n.d.) presents a significant

advantage for this Bachelor’s project. Serving as a valuable point of reference, the game offers a

tangible benchmark for comparison and enhancement throughout our project's development. This not

only facilitates iterative improvements but also sets the minimum thresholds and requirements aimed

to be surpassed.

2.4 Unity Shell Texturing Project

2.4.1 Objectives and limitations

The objective of this project is to focus primarily on the understanding of what is shell texturing

and how it is made in a real-time environment. The understanding of how to code in HLSL will be

necessary and since Unity has its own methods, an adaptation to that understanding will have to be

made to be able to code inside the Unity editor.

The final goal of the project is to determine how to resolve the shell rendering problems when

fur strands are perpendicular to the direction the camera is facing and to understand in what

configurations this resolution is not feasible.

As a Bachelor’s degree student, it is essential to acknowledge the limitations related to an

academic setting. Primarily, the time available to develop the project is restricted by an academic

calendar, allowing limited time for its creation. Furthermore, despite rigorous and dedicated study, the

level of expertise necessary for such a project would probably require years of specialised experience

and exposure to industry-standard practices and technologies.

The project's ambition is calibrated to reflect a learning exercise and a demonstration of

potential rather than a product ready for professional application. This perspective ensures that the

project remains a demonstrative tool, designed to expose understanding and skills, rather than meeting

Bachelor’s thesis - MODULE 6GST0XF101.2

21

commercial standards. It is important to acknowledge that many researchers and professional graphics

programmers have already treated this subject and are still working towards its improvement.

2.4.2 Unity projects

The Unity projects will focus mainly on the replication of the shell texturing method seen in

Genshin impact and if possible, its improvement. It will be decomposed in six steps, each adding a layer

of improvement either related to the technical or visual outcome.

2.4.2.1 Initial approach

The first approach will be a naïve attempt to produce, without prior knowledge, a technique

combining simple shaders and C# scripts to produce the shell texturing. The objective of this first

approach is to understand how to replicate shell texturing ideally without having to focus on the

intricacies of HLSL. Any specific algorithms related to graphical fidelity such as light simulation,

reflection, and shadowing will be ignored at this point since the focus is on understanding the theory

and not producing a high-quality project.

2.4.2.2 HLSL attempt

Once that first step is accomplished, the project will be improved by exclusively using shader

language to generate the necessary shells for producing fur. The use of a geometry shader is intended to

remove these shells. Eliminating the C# scripts will align the project more closely with professional

graphics programming practices. During the process, the objective will be to improve the code and test

its limitations to have the most visually pleasing outcome without neglecting its optimality. At this point,

the project will ideally contain some graphically accurate lighting and shading models.

Bachelor’s thesis - MODULE 6GST0XF101.2

22

2.4.2.3 Shell and Fin

Once the shell-texturing shader is done, the implementation of a fin shader will produce

extracted vertices over the entire surface of any object on which textures of fur strands will be

projected. Since both shaders are exactly opposite (Lengyel et al., 2001), the idea is to create a merged

version to either render shells or fins according to circumstances such as the distance and angle of the

camera. This adaptation will allow it to seamlessly transition from shell to fin and avoid edge cases

where the viewer obviously sees flaws.

2.4.2.4 Scene variations

With the different fur generating shaders created, tests will be done throughout multiple scenes

of defined complexities to be able to obtain data such as frame rate and memory usage. These scenes

will contain objects with shapes of different levels of complexity to evaluate specific edge cases and

varying size environments to push the boundaries of the hardware used and obtain measurements that

will later be compared to those extracted from different devices.

2.4.2.5 Hardware implementations

Once that comparison is done on a personal computer, the project will be ported on hardware

setups such as the Nintendo Switch and Android mobiles so that an analysis of frame rate and visual

outcome can be made. The comparison made on different hardware will first demonstrate the

possibility of using the created shaders on lower capacity machines, but it will also deliver insight on

possible improvements or limitations.

2.4.2.6 Other Improvements and edge cases

Lastly, improvements will be attempted regarding lighting, shadowing and physical behaviour by

implementing algorithms found in different papers.

Bachelor’s thesis - MODULE 6GST0XF101.2

23

2.4.3 Anticipated protocol

Up to this point, the shell texturing, fin, geometry and polygon techniques have been used and

developed over time to render hair, fur or grass. These five methods have the same common point of

interest being rendered in real-time.

Regarding the test protocol, it is expected to have at least three scenes that will mimic Genshin

Impact’s shell texturing technique. These three scenes will be declined with each developed method,

the naïve shell rendering, the HLSL geometry technique, and the shell and fin technique for a total of

nine scenes.

Each scene will contain objects with different levels of complexity, the first scene will be

rendering a simple plane with four vertices, the second will contain the same plane and multiple basic

Unity spheres and the last will contain multiple complex objects.

The extraction of data such as frame rate and memory used will be done for each scene. To

extract this data multiple tools will be used. The first tools used will be Unity's set of tools such as the

Statistics window, the Frame debugger, the Profiler, and the Render Debugger. Secondly, the use of

RenderDoc or Nvidia Nsight Graphics will be used to analyse frames.

2.5 Conclusion

Throughout this state of the art, the definition of the important composites of the problematic

was laid out, exposing the most common ways to render fur and hair, reviewing four games that have

been using shell texturing for several years and finally exposing the objectives and components of the

anticipated project.

Bachelor’s thesis - MODULE 6GST0XF101.2

24

3. Qualitative Analysis

3.1 Interviews

With the projects and anticipated protocols defined, it was important to reach out to

professionals and experts in the graphics programming field to see what their thoughts about the

approach were, or if they had any feedback or tips about the methodology. The questions varied

according to each specialist and all of them can be found in the appendixes (See Appendix A &B).

Unfortunately, only one specialist answered the given questions.

The most important information gathered was first the mention of the Real time rendering 4th

edition that seemed to be relevant to the project and secondly the advice regarding the project itself.

Resuming the advice received can be summarised in two key points: knowing and keeping in mind the

platform on which the project is being developed and the purpose for which the shaders are being

created (Sena, e-mail, 14 May 2024) (see Appendix A).

Due to a lack of answers from professionals and given the wide use of AI nowadays the

interview was attempted using ChatGPT and the answers gave interesting insight about the process of

fur creation. One of the common pieces of advice from ChatGPT and David Sena was the importance of

context. The optimisation strategies and techniques will differ according to the use and platform for

which the project is developed. The second converging element is the way the process should be

approached (ChatGPT, Interview, 2024) (see Appendix B).The mention of Unreal Engine and any other

suggested tools was discarded since the project aims at hand coded reproduction and improvement of

fur shaders in a stylised fashion.

Bachelor’s thesis - MODULE 6GST0XF101.2

25

3.2 Project Analysis

Two projects have been selected for analysis mainly because they were created with Unity but

also because they both have shell texturing and use the URP rendering pipeline.

The analysis criteria are first and foremost the visual quality and time to render a frame, then

data related to the memory usage, the number of vertices and lastly, if possible, how optimal they are

on lower capacity machines such as Nintendo Switch or mobile phones.

3.2.1 Genshin Impact

Genshin Impact is the first project selected for analysis, first because it brought up the question

of the utility of shell texturing given the flaws of that method but also because it was exported to lower

capacity machines like mobile phones as seen in the minimal hardware requirements given by Danielson

and Yonezawa (2024) on the website ScreenRant.

Originally the intention was to use software such as RenderDoc of Nvidia Nsight graphics to

capture a frame from the game and be able to compare it to the project. Unfortunately, due to an anti-

cheat system (Hoyoverse.com, 2024) it was impossible to use such a tool on this game. One possibility

would have been to use a cracked version of the game or use an anti-hack bypass such as the EasyPeasy-

Bypass given by the github user gmh5225 (Gmh, n.d.). However, none of these seemed to be an ethical

choice. For that reason and after multiple trials using RenderDoc and Nvidia Nsight Graphics, the

decision to stop trying and do a purely visual analysis of it had to be made.

Bachelor’s thesis - MODULE 6GST0XF101.2

26

Regarding the visual quality, the method used to render grass is shell texturing, recognizable

due to the discontinuity of layers (Figure 19, Yellow rectangle).

Figure 19 - Genshin impact caption with coloured rectangle highlighting specific elements. (X (formerly Twitter), 2024)

The colour seems to be randomly distributed between two values of green (Figure 19, Blue

rectangle). The most interesting fact about Genshin’s Impact grass shader is the reaction to light sources

(Figure 19, Red rectangle).

Bachelor’s thesis - MODULE 6GST0XF101.2

27

3.2.2. Hecomi – UnityFurURP

Thanks to Hecomi a Unity Fur project was developed with the URP pipeline (Hecomi, 2024). In

this project, available on github, multiple shaders are shown exposing three methods of fur rendering:

shell, fin, and geometry (Figure 20) (Hecomi, n.d.).

Figure 20 - Caption in Unity editor of the cloned github project from Hecomi showing shell, fin, and geometry shader
from left to right. (Styles, 2024)

Since the project is based primarily on shell texturing, it is useful to compare it with a version

developed by an experienced graphics programmer (Hecomi, 2024).

Figure 21 - Caption in Unity editor of the cloned github project from Hecomi showing shell. (Styles, 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

28

The shell scene contains a sphere with 515 vertices, a directional light, and a post processing

volume adding ACES tonemapping, bloom and vignetting. The sphere with shell textured fur has the

same problems identified in Genshin Impact (Figure 21).

The shader itself enables the material to have multiple exposed parameters like colour, number

and length of shells (Figure 22).

Figure 22 - Caption in Unity editor of the cloned github project from Hecomi showing shell material parameters .
(Styles, 2024)

The parameters exposed give the user the possibility of changing the way the fur is rendered

including specific parameters like wind and rim lighting (Figure 22).

Bachelor’s thesis - MODULE 6GST0XF101.2

29

Regarding the code itself, a geometry shader was used to extrude layers but the code being

sliced in 6 HLSL files makes it hard to understand for a beginner in graphics programming. The Unity Fur

project will still be useful as a reference. On the statistical side, data related to the rendering process

can be extracted thanks to Unity’s profiler tool.

Figure 23 - Caption in Unity editor of the project from Hecomi showing measures taken. (Styles, 2024)

The entire render pipeline takes 2,35ms per frame, varying between 0,06 and 2,16ms for a GPU

frame containing a total of 7160 vertices with 1.33 GB of memory used. The GPU frame takes on

average 1.38ms (Figure 23). These values, taken from Hecomi’s shell scene, will be very useful for our

project when it comes to analysing efficiency and visual appeal.

3.3 Conclusion

Throughout this qualitative analysis, information from a senior graphics engineer and an AI tool

was obtained. The analysis of two projects that brought a point of comparison in terms of efficiency and

visual appeal was done.

Bachelor’s thesis - MODULE 6GST0XF101.2

30

4. Test Protocol

4.1 Definition of the used metrics

4.1.1 Frame time

The frame time is an essential metric used to define if our project is efficient or not. According

to the interview done with David Sena:

“At the end of the day, performance constraints from the hardware platform that you're targeting are

what truly matters for a product. An amazing technique that takes too long to execute is not useful

because it can't be used.” (Sena, e-mail, 14 May 2024) (see Appendix A)

It is understandable that, related to his experience, visual quality is important but not as much as fluidity

of frame rate.

In this project the measure will not be done in frames per second but in seconds per frame or

how much time it takes for our renderer to finish its work and display the result of the shader for one

frame. The time measurement will be done globally and specifically, respectively accounting for all

passes and only the pass rendering the shells itself.

Bachelor’s thesis - MODULE 6GST0XF101.2

31

Figure 24 - Capture of the Render Debugger from Unity. (Styles, 2024)

Regarding the requirements, the human perception threshold is stated to be at a minimum of

24 frames per second and a maximum 60 although this maximum limit is currently still being debated.

This means that a frame must take up to 0.041666 seconds or 41.66666ms maximum (“ Flicker fusion

threshold”, 2024.-b). The objective is to not go over this time per entire frame and stay under the

2,16ms per GPU frame obtained from Hecomi’s project analysis in section 3.2.2.

4.1.2 Memory usage

The memory usage is the second point to measure. Since the improvement of technology

described by Moore’s law (“Moore’s law”, 2024.-c) does not apply to memory, it is even more important

to be able to measure it and limit its usage.

Thanks to Unity it is possible to obtain the values for the Managed heap “The used heap size and

total heap size that managed code uses” and the Graphics “The estimated amount of memory the driver

uses on Textures, render targets, Shaders, and Mesh data.” Normally one would try to obtain a VRAM

Bachelor’s thesis - MODULE 6GST0XF101.2

32

usage value, but Unity has not yet been able to determine that value since it is platform specific thus

rendering the measurement very complex (“How to use Unity’s memory profiling tools”, n.d.).

Figure 25 - Unity editor caption of the Memory Profiler tool indicating the difference memory allocations. (Styles,
2024)

With that in mind the principal value indicating the performance of the shaders is the graphics

(estimated) allocated memory.

The expectation is to stay in the same order of magnitude as the measures on Hecomi’s shell

shader, meaning 446.8 MB for the graphics estimated total. Any excess of memory usage will indicate a

problem in the procedure and shader itself.

4.1.3 Vertices

Since our project intakes a certain number of vertices to increase them and render the fur on

multiple extruded layers, one of the measurements of interest is the number of vertices resulting from

the shader’s action.

The values expected must be sensibly close to those obtained on Hecomi’s shader, in this case

14 times the original amount (7160 output /515 input = 13.90291). Due to a lack of experience, values

exceeding that amount will be tolerated if they do not surpass twice of that amount.

Bachelor’s thesis - MODULE 6GST0XF101.2

33

4.2 Measurement Tools

Unity, being a very complete game engine, will give us access to an entire set of tools that will

be specifically useful for measuring the values previously exposed. This chapter will expose all the tools

used throughout the project.

4.2.1 Unity Statistics:

The Unity statistics tool is a window exposing the most common values used for performance

optimisation and analysis.

Figure 26 - Unity editor Statistics tool. (Styles, 2024)

The values of interest are mainly:

- Render thread: time taken by the rendering thread to do its work for a frame

- Tris: the number of triangles rendered

- Verts: the number of vertices rendered

Bachelor’s thesis - MODULE 6GST0XF101.2

34

4.2.2 Unity Profiler & Timeline

The Unity profiler is a very complete tool used to analyse a lot of elements such as CPU usage,

rendering, memory, audio, video, and many others. It also gives a timeline in which the different the

different threads can be analysed in detail.

Figure 27 - Unity Profiler (top) and Timeline (bottom). (Styles, 2024)

In this case the interest is focused on the rendering and memory sections of that tool.

4.2.3 Rendering Debugger

The rendering debugger is a tool used to modify what is seen in Unity and apply masks and be

able analyse visually specific points like triangles and vertices in the case of the wireframe mesh

visualisation.

Figure 28 - Unity Rendering Debugger tool showing the Display Stats category. (Styles, 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

35

The values to focus on are in the “Display Stats” category where the different frame rates can be

found.

To be able to have a good estimation of the GPU frame time, the average will be calculated from

1000 measurements obtained directly from the Unity projects. The values will be captured at run-time

in the editor by storing them in an array of doubles thanks to a C# script (See Appendix P). The data

collected in a .txt file to be reported to an excel spreadsheet to be averaged.

4.2.4 Memory Profiler

Unity’s memory profiler is a complete tool that is useful when it comes to measuring memory

use (“How to use Unity’s memory profiling tools”, n.d.).

Figure 29 - Unity editor caption of the Memory Profiler tool. (Styles, 2024)

A simple version of the profiler is already integrated in the Unity profiler 4.2.2 but in this case

the use of the detailed version will give more information about the memory usage, especially regarding

the graphics memory allocation.

Bachelor’s thesis - MODULE 6GST0XF101.2

36

4.2.5 Unity Frame debugger

Unity’s frame debugger is a useful tool when it comes to analysing specific frames. It exposes all

the different passes or steps the rendering goes through to display the final image and gives all the data,

values, and textures accounted for in the process.

Figure 30 - Unity editor screenshot of the Frame Debugger tool. (Styles, 2024)

4.2.6 RenderDoc

RenderDoc is a tool that sensibly resembles Unity’s frame debugger as it also exposes all the

passes. The main difference is that, since it is a software dedicated to frame analysis, it has more in-

depth information for each step.

Figure 31 - RenderDoc used on Hecomi's project. (Styles, 2024)

This project might not need it but in case specific information cannot be found with Unity it is

still a useful resource to consider.

Bachelor’s thesis - MODULE 6GST0XF101.2

37

4.2.7 Nvidia Nsight Graphics

Lastly, like Unity's frame debugger and RenderDoc, Nsight Graphics is a tool used to analyse

frames and output precise information. Again, the project will probably not need to use it except on

lower capacity machines where the former tools might not work.

Figure 32 - NVIDIA Nsight Graphics used on the initial approach project. (Styles, 2024)

4.2.8 GPU Watch

The project will be tested on a Samsung Galaxy A50 phone. Samsung delivers a tool called

GPUWatch which is said to be:

“A tool for observing GPU activity in your application. GPUWatch is made for developers who use

Samsung devices to get GPU related information with the least effort. Detailed information is overlaid

onto the screen in real-time. And it is very simple to enable -no PC required.” (Samsung Developers, n.d.)

Bachelor’s thesis - MODULE 6GST0XF101.2

38

Figure 33 - Combination of screenshots resuming the process to activate GPUWatch on Samsung Galaxy A50.
(Styles, 2024)

This tool will deliver indicative information such as the current average frame per second rate,

CPU and GPU load (Figure 32, right part). The FPS value will mostly be considered as indicative since it

depends on factors such as VSync and inaccurate averaging (phort99, 2015) but it will still gives a global

idea of how the project behaves on the Galaxy A50 mobile phone.

4.3 Conclusion

In this chapter, the metrics used to measure the project have been defined and a list of tools

that will be used have been exposed. The metrics, as seen in the first part of this chapter, are principally

focused on visual performance. Any other parameters except for edge cases, where significant

differences would lead to a frame fluidity problem, will not be retained. Regarding the list of tools, the

main focus will be on those available in Unity. The others might end up being useful if the main set of

tools does not allow sufficient analysis results.

Bachelor’s thesis - MODULE 6GST0XF101.2

39

5. Practical Project

The objective of the project is to be able to understand how shell-texturing is created and reproduce a

shader mimicking the styles of Genshin Impact’s grass and create it in a way that will allow multiple

usages across different scenes of diverse complexities. For that purpose, the shader will have to be able

to adapt to the given objects, those being complex, like furry characters, or simple objects like planes,

cubes or spheres. The project will ultimately allow measurements to be carried out on multiple devices

and finally understand the shader’s limitations regarding scene complexity on different hardware.

5.1 Development environment

5.1.1 The hardware used

The personal computer used for creation and initial testing of the project is an Acer ConceptD

with an Intel Core i7 9750H at 2.60GHz, which has 32 Gbytes of DDR4 memory, an Nvidia GeForce RTX

2060 graphics card and an 4K Ultra HD (3840 x 2160) 60Hz display.

The Samsung mobile phone used for the tests has the following description:

“The Galaxy A50 has a 6.4" FHD+ (2340 x 1080) 60 Hz Super AMOLED Infinity-U display, with an

[sic] 19.5:9 aspect ratio. It is powered by an Octa-core, 4x2.3 GHz ARM Cortex-A73 and 4x1.7 GHz ARM

Cortex-A53, 64-bit, 10 nm CPU and a Mali-G72 MP3 GPU.” (Wikipedia, 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

40

5.1.2 The software used

Regarding the software and tools, this project uses Unity version 2022.3.24f1, the latest LTS

version available. All the sets of Unity tools used for measurement are related to that version.

Figure 34 - UnityHub screenshot of the Installs category showing the 2022.3.24f1 LTS version. (Styles, 2024)

The additional packages used for this project were the following:

● Input System 1.7.0

● TextMeshPro 3.0.9

● Universal RP 14.0.10 & Universal RP Config 14.0.9

● Visual Studio Editor 2.0.22

The JetBrains Rider editor 3.0.28 was installed in the Unity packages but disabled in the IDE.

Figure 35 - Unity editor Package manager tool showing the installed packages. (Styles, 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

41

The IDE used for development is the Visual Studio Community 2019 version 16.11.34 with the

.NET desktop development and Game development with Unity packages installed.

Figure 36 - Visual Studio IDE Installer showing the packages category. (Styles, 2024)

The RenderDoc version is the 1.33 using Qt version 5.15.2 and the Nvidia Nsight Graphics

version is the 2024.1.0.0, build 34057410.

5.2 Limitations

Throughout this project some of the initial intentions were not fulfilled. Regarding the project

itself, a limiting decision was pre-emptively made by following the stylised style of Genshin Impact,

discarding more realistic texturing and lighting to focus of the main objective that was to find an optimal

solution to the camera’s perspective and compare it to a project that was effectively made in Unity.

In its current state the points described in 2.4.2.1 & 2.4.2.2 are successful but required a

considerable amount of time between the learning of the HLSL and the transition of the basic CG

implementation to the HLSL version.

Point 2.4.2.3 was attempted but was not successful due to a lack of expertise regarding the

technical challenge of merging two distinct methods in a single shader and an underestimation of the

time required for such a project. That element was the main reason for time-loss on the project.

The 2.4.2.4 was done despite the previous blocking objective.

Bachelor’s thesis - MODULE 6GST0XF101.2

42

The 2.4.2.5 was accomplished but not tested on a wide range of machines as initially intended

since only the Acer ConceptD and the Samsung Galaxy A50 were continuously available. The learning

process and high challenge coupled with time-loss due to compilation and coding errors did not allow

the build to be done on Nintendo Switch.

The 2.4.2.6 was successful and added a layer of improvement to the shader with shadows and

simple physical behaviour.

5.3 Projects procedure

The implementation of shell texturing as described in 2.2.1 relies on the extraction of layers

from an object to colour them degressively according to a given noise. The initial project 2.4.2.1 used a

Unity sphere object containing a camera in a scene with a directional light, a canvas prefab to draw UI

and an event system component to be able to navigate in the UI.

Figure 37 - Unity editor NaïveShell project exposing the Canvas prefab in the Hierarchy. (Styles, 2024)

The layer extraction was done with a C# script that communicated with a shader file for

coloration written in CG. The full HLSL version 2.4.2.2 contains the same elements with the exception of

the C# script and shader file which were replaced by a shader file written in HLSL.

Bachelor’s thesis - MODULE 6GST0XF101.2

43

Figure 38 - Unity editor screenshots of two Inspectors exposing the SimpleShell script and HLSLGeom shader material
parameters. (Styles, 2024)

The resolution of the problem of the camera’s perspective described in 2.4.2.3 was attempted

with a sphere containing two materials and an HLSL shader that combines both shell and fin texturing,

but the results were not visually pleasing.

Figure 39 - Unity scene showing attempts at Shell and Fin shader merging. (Styles, 2024)

The implementation was abandoned at that point in order to advance on the project.

The objective described in 2.4.2.4 was first applied by adding a point light and a plane in the

scene to add a layer of complexity and measure the impact of lighting and shadow projection.

Bachelor’s thesis - MODULE 6GST0XF101.2

44

Figure 40 - Unity editor screenshot showing the HLSLGeom1 scene with light information in the inspector.
(Styles, 2024)

The second level of diversification was achieved by adding a skybox, a plane and 18 spheres in

the scene to simulate a complex environment and measuring how the shader impacts performance

when widely used.

Figure 41 - Unity editor screenshot showing the HLSL_ComplexScene. (Styles, 2024)

The hardware implementation described in 2.4.2.5 was done by building the project for Android

and windows through Unity’s build settings.

Bachelor’s thesis - MODULE 6GST0XF101.2

45

Figure 42 - Capture of the Unity Build Settings window. (Styles, 2024)

The improvements described in 2.4.2.6 were added after analysing shader code given by Hecomi

for light interaction and shadows. The physical interaction was accomplished by gradually modifying the

shader and transmitting the user’s input using Unity’s input system and a C# script to transmit

information to the shader.

Figure 43 - Unity editor screenshot of the Inspector window showing the relation between player input and HLSL
shader. (Styles, 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

46

Additionally, an asset downloaded from TurboSquid (TurboSquid, n.d.) was integrated into the

project and the collaboration of a game artist on the creation of textures coupled with some shader

modifications brought the results presented in the figure below (Figure 43).

Figure 44 - Unity editor screenshot showing the rigger horse from TruboSquid with the HLSL shader on it. (Styles, 2024)

The last improvement added to the project was a scene manager with basic UI to be able to

transition between scenes without having to build and run each scene independently.

Bachelor’s thesis - MODULE 6GST0XF101.2

47

5.4 Technical implementation

5.4.1 Initial approach

The initial project was created using a Unity Sphere Mesh Filter as the base mesh on which the

fur is rendered. It was initially created thanks to a video of Garrett Gunnell that explained the process

and the general idea for the code (Acerola, 2023).

Figure 45 - Unity capture showing the Sphere object's inspector. (Styles, 2024)

The extraction of layers in the first version is done first with a C# script by adding extra objects

containing MeshFilters and MeshRenderers, parenting them to the initial object and assigning them an

index for each layer.

Figure 46 - Unity editor showing the mesh layering from the initial approach project. (Styles, 2024)

Bachelor’s thesis - MODULE 6GST0XF101.2

48

Afterwards the layer index is transferred to the HLSL shader so that it knows what object to

modify. Additional parameters contained in the Simple Shell script are also transferred to the shader at

the same time. (Styles, 2024) (see Appendix E).

Figure 47 - Capture of the SimpleShell.cs script in the Visual Studio IDE. (Styles, 2024)

The shader, originally written in CG (Styles, 2024) (see Appendix C) was translated to HLSL

(Styles, 2024) (see Appendix D) for the purpose of compatibility with the URP pipeline.

Figure 48 - Capture of Hugo Elias’ hashing function from the Shell.shader script in the Visual Studio IDE. (Styles, 2024)

A hash function was borrowed from Hugo Elias and found on ShaderToy (Beautypi, n.d.) to be

able to rely on generated noise instead of a noise texture.

Bachelor’s thesis - MODULE 6GST0XF101.2

49

Figure 49 - Capture of the Vertex shader code from the Shell.shader script in the Visual Studio IDE. (Styles, 2024)

The shader itself works in two parts. First the vertex shader, called Varyings in URP, is

responsible for displacing the meshes along the normal vectors according to a previously calculated

height obtained from the index of the currently treated shell divided by the number of shells. The

displacement modifications (Figure 48, Red rectangle) change the orientation of the fur at run-time with

a C# script and Unity’s input system (Styles, 2024) (see Appendix L).

The second part of the shader, the fragment shader, is responsible for the colouration of the

different meshes.

Bachelor’s thesis - MODULE 6GST0XF101.2

50

Figure 50 - Capture of the fragment shader code from the Shell.shader script in the Visual Studio IDE. (Styles, 2024)

It uses the hash function with a previously calculated number obtained from the UV coordinates

to generate a random height value and define what part of the different meshes are coloured of not. A

check is then done to discard pixels that do not correspond to the current height threshold.

Bachelor’s thesis - MODULE 6GST0XF101.2

51

Figure 51 - Capture of the initial approach scene in the Unity editor. (Styles, 2024)

The colour is then applied to the non-discarded pixels using the half-lambert lighting model

(Jordan Stevens, n.d.)

Bachelor’s thesis - MODULE 6GST0XF101.2

52

5.4.2 HLSL

The full HLSL version’s parameters and layer extraction are all contained in the shader files,

giving access to them directly in the material parameters of the inspector window.

Figure 52 - Unity editor capture of the HLSLGeom shader's material showing parameters in the inspector window.
(Styles, 2024)

This modification is achieved by first declaring the properties in the shader file (Styles, 2024)

(see Appendix G). The body of the programme is declared in a separate file to avoid code repetition and

improve readability.

Bachelor’s thesis - MODULE 6GST0XF101.2

53

Figure 53 - Capture of the Geometry shader code from the Fur.hlsl script in the Visual Studio IDE. (Styles, 2024)

The extraction of the mesh previously done with the C# script is done with a geometry shader

and the SetupVertex function and the fragment programme that used a pseudo-random generator is

replaced by two noise textures (Styles, 2024) (see Appendix H).

Figure 54 - Unity editor capture of the HLSLGeom scene. (Styles, 2024)

The analysis of Hecomi’s code added a layer of improvement regarding lighting and shadows

with the addition of multiple Unity keywords, a shadow caster pass and functions for shadow

Bachelor’s thesis - MODULE 6GST0XF101.2

54

calculations (Styles, 2024) (see Appendix I). Finally, the use of Unity’s UniversalFragmentPBR function

replaces the previous lighting model (“Unity-Technologies/Graphics”, n.d.-h).

5.4.3 HLSL Complex object

The last version of the shader incorporates the use of textures for the base colour, occlusion,

roughness, metalness and emissive by declaring 2D variables in the .shader file and TEXTURE2D and

SAMPLER variables in the .hlsl file (Styles, 2024) (see Appendix J & K).

Figure 55 - Unity editor capture of the material parameters in the inspector window. (Styles, 2024)

The previous values for each channel are used as influence modifiers to reduce the impact of

each texture if necessary.

Bachelor’s thesis - MODULE 6GST0XF101.2

55

Figure 56 - Unity editor capture of the HLSL_ComplexObject scene showing the riggerd horse without colour (left) and
with colour (right). (Styles, 2024)

This implementation allows complex meshes to be coloured according to the textures produced

by an artist.

Figure 57 - Unity editor inspector window capture showing the shell detail parameters. (Styles, 2024)

The use of noise textures for the fur generation gives the possibility to define parts of the mesh

that must be with or without fur by inputting a black and white texture in one of the detail channels.

Bachelor’s thesis - MODULE 6GST0XF101.2

56

Figure 58 - Unity editor capture of three shader variations showing the rigged horse with short (right), long (middle),
and red tinted (left) fur. (Styles, 2024)

With all these improvements, the users can modify the object’s appearance at their

convenience.

Since complex objects like the horse character (Figure 57) often use SkinMeshRenderers, a

modification of the C# controller script was made to be able to take multiple renderers instead of one

(Styles, 2024) (see Appendix M).

Figure 59 - Unity editor inspector capture showing the Animator component. (Styles, 2024)

Finaly, motion was added with an animator component and an animation clip to be able to

visualise the fur’s reaction to mesh movements in real-time (SamuelStyles, 2024).

Bachelor’s thesis - MODULE 6GST0XF101.2

57

5.4.4 UI and Scene Management

To be able to measure conveniently all the scenes exposed in 5.3 on all platforms described in

2.4.2.5, a UI was created with the Unity Canvas, Buttons and TextMeshPro – Text(UI) components

(Figure 59).

Figure 60 - Unity editor Hierarchy capture showing the Canvas prefab hierarchy. (Styles, 2024)

The user input was dealt with the Unity input system and an EventSystem component (Figure

60).

Figure 61 - Unity editor inspector window capture showing the EventSytem component. (Styles, 2024)

To deal with the scene management two C# scripts were created. One responsible for the

loading of scenes in run-time (Styles, 2024) (see Appendix N) and the other for the creation of a

scriptable object (“Unity - Manual: ScriptableObject”, n.d.-f) that holds the current scene index across

scenes (Styles, 2024) (see Appendix O).

Bachelor’s thesis - MODULE 6GST0XF101.2

58

Figure 62 - Unity editor capture of the Project Settings window showing the Active Input Handling parameter. (Styles,
2024)

The last modification that had to be made for cross-platform compatibility was to change the

Active Input Handling in the Project Settings window under the Player menu to only tolerate the Input

System Package (New) (Figure 61). Without that modification, the Android build does not compile.

5.5 Conclusion

In this chapter the development of the project was exposed, describing the hardware and

software in 5.1.1 and 5.1.2 respectively. The project primarily based on the visuals obtained from the

project analysis of Genshin Impact in 3.2.1 was improved with the analysis of Hecomi’s code in 3.2.2.

The entire procedure leading to the final version of the shell texturing shader including the

limitations and technical implementation was described in 5.2, 5.3 and 5.4.

Bachelor’s thesis - MODULE 6GST0XF101.2

59

6. Quantitative Analysis

The objective of this analysis is to use three versions of the shell-texturing shader and measure

them in five different scenes, as described in section 5.3 with the tools described in section 4.2, the

values of frame time, memory usage and vertex multiplication.

Figure 63 - Hecomi's project measurements, (Styles, 2024)

The limit values must not be over 14 times the original value for the vertex multiplication factor

(Figure 63, middle) and 446.8 MB for the graphics total memory allocation (Figure 63, right) as measured

in section 3.2.2.

Regarding the GPU frame time, the measurements, 3.30ms (Figure 63) taken on Hecomi’s

project with the script developed and described in section 4.2.3, ended up being higher than the initial

2.16ms per GPU frame time exposed by the Unity render debugger. For that reason, the new value will

be use as point of comparison for the following measurements.

The final measurement, taken on the Android mobile phone described in section 5.1.1, will give

an indication on how the project runs on a lower capacity machine.

Bachelor’s thesis - MODULE 6GST0XF101.2

60

6.1 Measurement conditions

All the measurements are done the 24th of June 2024, in Lausanne, Switzerland.

Figure 64 - Unity editor bottom left UI options showing the release (left) and debug (right) presets. (Styles, 2024)

The projects, as done with Hecomi’s in section 3.2.2, are measured in the Unity editor in release

mode (Figure 62, left) for the Acer ConceptD computer. The Android Galaxy measurements are made

with a build of the project. All the measurements, although a script enabling fur movement was added,

are taken in a static object state.

6.2 Project Measurements

6.2.1 Initial approach

Measurements on the first version of the project give interesting results (Figure 65).

Figure 65 - Measurement of the Initial approach project. (Styles, 2024)

At an average of 3.23ms (Figure 66), the GPU frame time from the rendering debugger could be

considered as over the limit compared to the initial 2.16ms. Considering the measurement of 0.86ms

(Figure 65, left), the project happens to be more optimal than Hecomi’s. This result could be explained

by the four passes the rendering goes through on Hecomi's project.

Bachelor’s thesis - MODULE 6GST0XF101.2

61

Figure 66 - Unity editor capture showing the measurement of the NaïveShell scene. (Styles, 2024)

The vertex multiplication factor criteria, with an output at 132’090 vertices for an original input

of 515, exceeds the validation threshold. The memory usage given by the memory profiler, with a total

of 2.03GB, also surpasses the targeted value.

Figure 67 - Unity editor capture showing the Memory Profiler on the NaïveShell scene. (Styles, 2024)

These two values, being over the limit of validation, clearly indicate a problem with the initial

version of the project.

Bachelor’s thesis - MODULE 6GST0XF101.2

62

Figure 68 - Screen capture of the Android Galaxy A50 measurements for the NaïveShell scene. (Styles, 2024)

As expected, the values measured from the Android phone give a low frame rate at an average

of 19 frames per second (Figure 68). In this state, the movement of the object is not fluid, and the

flickering is noticeable.

Bachelor’s thesis - MODULE 6GST0XF101.2

63

6.2.2 HLSL

The second version of the project that uses only shader files and relies on HLSL instead of C#

scripts for layer generation already gives better results than the previous version.

Figure 69 - Measurements of the HLSL Shader project. (Styles, 2024)

As expected, the use of a geometry shader not only reduces the time of a GPU frame but also

impacts the multiplication factor and the memory allocation as exposed in figure 69.

Figure 70 - Unity editor capture showing the measurement of the HLSLGeom scene. (Styles, 2024)

The vertex value outputs 2,790 vertices for a factor of multiplication of 5.42, meaning that the

validation criterion is reached. This change is mainly due to the difference between the use of a C# script

layering meshes on top of each other and the use of the geometry shader to execute the same task.

Bachelor’s thesis - MODULE 6GST0XF101.2

64

Figure 71 - Unity editor capture showing the Memory Profiler on the HLSLGeom scene. (Styles, 2024)

Regarding the graphics memory allocation, an improvement compared to the initial version is

noticed but it still stays over the targeted value of 446.8 MB. This measurement can be explained by the

reduction in the amount of meshes that are rendered.

Figure 72 - Screen capture of the Android Galaxy A50 measurements for the HLSLGeom scene. (Styles, 2024)

With the Android mobile measurements, the project significantly improves in terms of fluidity

with a current average at 30 frames per second and no noticeable flickering (Figure 72).

Bachelor’s thesis - MODULE 6GST0XF101.2

65

Figure 73 - Unity editor capture showing the measurement of the HLSLGeom1 scene. (Styles, 2024)

The following phenomenon happens in the third version when adding lighting to the scene and

having shadows cast on a plane: the GPU frame time is not substantially impacted by the lighting, nor is

the memory allocation. On the other hand, the multiplication factor is practically doubled.

Figure 74 - Measurement comparison on the HLSL Shader project with and without light

The hypothesis for this result is the duplication of passes, since the shader does twice its work

when rendering shadows (See Appendix G).

Bachelor’s thesis - MODULE 6GST0XF101.2

66

Figure 75 - Screen capture of the Android Galaxy A50 measurements for the HLSLGeom1 scene. (Styles, 2024)

The mobile measurements give an average frame rate of 18 which is comparable to the initial

version of the shader without any lighting or shadow projection. One noticeable difference is that the

additional lighting on the mobile build does not seem to be rendered (Figure 75).

Figure 76 - Unity editor capture showing the measurement of the HLSL_ComplexeScene scene. (Styles, 2024)

For the fourth project, when applying the shader to an entire scene with 18 spheres and a 10 by

10 plane for a total count of 9391 vertices results in an output of 44560 vertices.

Bachelor’s thesis - MODULE 6GST0XF101.2

67

Figure 77 - Measurement of the HLSL Shader in the complex scene project. (Styles, 2024)

The vertex multiplication factor at 4.47, is a better result than in the HLSL single sphere scene

(Figure 77, middle).

Figure 78 - Capture of RenderDoc usage on the HLSL_ComplexeScene scene. (Styles, 2024)

RenderDoc gives information about the rendering process. The value is lower due to frustrum

culling and other Unity built-in graphical optimisation techniques.

The value to acknowledge is the GPU frame that increases up to 6.36ms (Figure 77) or 92.59%

(Figure 85) more than the targeted value. This result indicates the influence of a broad use of the shader

and how it can influence fluidity when used on many objects.

Bachelor’s thesis - MODULE 6GST0XF101.2

68

Figure 79 - Unity editor capture showing the Memory Profiler on the HLSL_ComplexeScene scene. (Styles, 2024)

Regarding the memory allocation value, it is interesting to consider that for 18 times more

objects, lights and shadows, the HLSL shader is at the same level as the first one.

Figure 80 - Screen capture of the Android Galaxy A50 measurements for the HLSL_ComplexeScene scene. (Styles, 2024)

The mobile measurements, giving an average of seven frames per second with 77% of the CPU

load, seem to indicate that the shader is not optimal when widely used. The results in terms of fluidity

and flickering are dreadful despite the graphical optimisation techniques given by the Unity engine.

Bachelor’s thesis - MODULE 6GST0XF101.2

69

6.2.3 HLSL Complex object

The results gathered on the fifth project are probably the most representative of a normal use

of the shader since it is targeted on an animated character instead of an entire scene.

Figure 81 - Measurements of the HLSL Complex object scene. (Styles, 2024)

The measurements for the GPU frame time give 1.15ms (Figure 82), identical to the lighted

version of the HLSL shader, when measured on the rendering debugger. The difference lies in the

measurements gathered with the DataExtractor script (See Appendix P) where it appears to be 33%

slower than the lighted version (Figure 81, left).

Figure 82 - Unity editor capture showing the measurement of the HLSL_ComplexeObject scene. (Styles, 2024)

This difference can be explained by the amount of surface the shader covers going from 5700

vertices for the sphere to 21680 for the 3D horse model. With an input of 1862 vertices for the head,

1407 for the body and 3269 in total, the vertex multiplication factor is at 47% of the targeted value

which meets the validation criterion.

Bachelor’s thesis - MODULE 6GST0XF101.2

70

Figure 83 - Unity editor capture showing the Memory Profiler on the HLSL_ComplexeObject scene. (Styles, 2024)

The memory allocation, with a value of 456.2MB, represents an increase of 2% compared to the

original target value which is a considerable increase compared to the two

 previous shader versions.

Figure 84 - Screen capture of the Android Galaxy A50 measurements for the HLSL_ComplexeObject scene. (Styles,
2024)

The mobile measurements seem to be as optimal as the first HLSL version even with an increase

in the number of vertices and the use of an animator system.

Bachelor’s thesis - MODULE 6GST0XF101.2

71

6.3 Project Analysis

Figure 85 - Measurements of the GPU frame time and comparison on all projects. (Styles, 2024)

Regarding the GPU frame time, measurements indicate its relationship with shader passes and

shader usage. Hecomi’s shader, having four passes, appears to be less optimal than any other shader

using two render passes, as long as the shader is restrained in its usage (Figure 85).

Figure 86 - Measurements of the multiplication factor and comparison on all projects. (Styles, 2024)

Concerning the multiplication factor, the influence of layering seems to be correlated with the

way the shader processes the initial mesh. In the case of the initial approach (Figure 86) the addition of

meshes, without any specific treatment after that process, gives unacceptable results in terms of

optimisation. Projects relying on geometry shaders give better results despite the number of objects on

which the shader is used (Figure 86).

An observation to consider is the impact of the number of passes used to render fur. Since the

shader uses two passes and the multiplication factor is doubled, the measurements of the HLSL lighted

scene (Figure 86) indicate a direct correlation between them.

Bachelor’s thesis - MODULE 6GST0XF101.2

72

Figure 87 - Measurements of the graphical memory allocation and comparison on all projects. (Styles, 2024)

Regarding the graphical memory allocation, shaders relying on the use of textures for the fur’s

colour are less memory consuming than those using variables, despite the number of vertices contained

in the object on which the shader is used. These measurements are counter-intuitive since the HLSL

Complex shader does not remove the use of colour parameters but adds 2D textures multiplied by them

as exposed in section 5.4.3.

One of the possible reasons behind these results could be related to texture compression or

another optimisation done by the Unity engine (Technologies, n.d.-a & -b). Unfortunately, due to a lack

of time, the reason behind this phenomenon couldn’t be demystified.

Figure 88 - Measurements of the frames per second and comparison on all projects. (Styles, 2024)

In terms of frames per second, although the values in figure 88 cannot be considered as

appropriate due to factors such as VSync, it is still relevant to acknowledge the impact of elements such

as lighting and shadows and the repercussion of wide usage of the shader despite the graphical

optimisations given by Unity.

Bachelor’s thesis - MODULE 6GST0XF101.2

73

6.4 Conclusion

In this chapter, some of the tools discussed in section 4.2 were employed to measure the

metrics outlined in section 4.1 across all projects presented in section 5.3.

The collected data reveals that versions using HLSL shaders demonstrate superior performance

compared to those relying on C# scripts for GPU data transfer. However, even with optimised HLSL

shaders, complex scenes can still encounter performance bottlenecks due to the high output of vertices.

The initial approach project, while maintaining fluidity on portable computers, proves itself

impractical for complex scenes or lower-end hardware usage. HLSL shaders significantly outperform the

initial approach, particularly in scenarios involving minimal use of fur shaders and simple lighting setups.

The latest shader version reflects insights and improvements from a professional graphics

programmer, notably enhancing performance, particularly in terms of memory management.

In terms of validation criteria, HLSL versions effectively manage GPU frame time when shader

usage is limited to essential elements. The vertex multiplication factor criterion is consistent across all

HLSL cases, likely due to Hecomi employing multiple passes for depth, light, and shadow calculations, all

contributing to the layering effect produced by the geometry shader. While achieving visually similar

results, the question of the purpose behind using so many passes could be raised.

Bachelor’s thesis - MODULE 6GST0XF101.2

74

7. Conclusion and further research

This study aimed to identify the cause of the visual problem encountered when using shell

texturing in real-time environments and the possible improvements leading to its resolution.

The first chapter highlighted two examples of the use of this method in AAA games. It exposed

the main differences between real-time and pre-calculated experiences, as well as the project's

guidelines, its development, and the anticipation of certain limitations.

Based on this, the second chapter refined the concepts of fur, realistic rendering, and

understanding what Unity’s engine is. It also presented different methods for rendering fur and four

examples of use of shell texturing in the video game industry over the past 20 years. A rough plan of the

project was also presented.

Interviews with an experienced professional, David Sena, and ChatGPT, along with their

analyses, validated the interest in the topic and highlighted the importance of resource gathering when

undertaking such a project. Some resources, not applicable to the use of Unity, were set aside but their

analysis provided insights into the current state of methodologies for creating fur in real-time

environments.

The empirical methodology employed led to the use of HLSL shaders, which were used to

improve the initial project and allowed for adaptations meeting the validation criteria established in the

fourth chapter, dealing with metrics, their threshold values, acceptance criteria, and the measurement

tools for gathering these values. The resolution of the problem initially presented proved to be much

more complex than initially anticipated and allowed a better understanding of the complexity of the role

of a graphics programmer.

The quantitative chapter allowed for tests to be conducted under predefined conditions on all

versions of the project. This quantitative study revealed that optimisation criteria such as GPU frame

Bachelor’s thesis - MODULE 6GST0XF101.2

75

time and memory usage are important factors to consider when evaluating a graphics project. In

contrast, the multiplication factor criterion is less recognised as relevant to the measurement itself due

to technologies provided by the Unity engine, such as frustum culling, but it highlights the impact of the

final vertex count in a scene.

Finally, the results of the project highlight several key aspects: It is possible to render fur in real-

time, and multiple methodologies are available to do so regardless of the engine used. Designing a

shader that addresses the issue of the camera’s perspective requires a much deeper understanding of

the domain or a resolution using another method, which might be less optimal than shell texturing.

Additionally, it is pertinent to emphasise the importance of the context for which these shaders are

developed, as each project needs to be created with specific targets in mind for its final use, whether in

terms of platform, capabilities, or visual rendering quality.

These elements are, however, subject to temporal and technological factors due to constant

improvements in both hardware and software.

While the findings of this work provide insights and guidance on the subject, it is important to

consider limiting factors such as a lack of professional experience in the field, the time taken to study

graphic languages, and the laborious iterative process.

During the study, several points of interest emerged, such as the use of other game engines, the

development of a custom rendering engine to facilitate the implementation and measurement of

shaders, and the exploration of other methods that could provide development pathways for another

Bachelor's student interested in the subject or for further research in the context of a Master's thesis.

Bachelor’s thesis - MODULE 6GST0XF101.2

76

8. References

8.1 Articles

Andersen, T.G., Falster, V., Frisvad, J.R. and Christensen, N.J., (2016). Hybrid fur rendering: combining

volumetric fur with explicit hair strands. The Visual Computer, 32(6–8), pp.739–749. Available at:

https://doi.org/10.1007/s00371-016-1252-x [Accessed 16 June 2024].

DoVale, E. and Motion Picture Science, Rochester Institute of Technology (RIT), (2021). High Frame Rate

Psychophysics: Experimentation to Determine a JND for Frame Rate. Motion Picture Science, Rochester

Institute of Technology (RIT). Available at:

https://s3.cad.rit.edu/cadgallery_production/storage/media/uploads/faculty-s-

projects/1918/documents/177/framerate-visibility-thesis.pdf [Accessed 16 June 2024].

Döllner, J., Hinkenjann, A. and Wiemker, R., (2006). Shell-texturing for real-time fur rendering.

Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames, pp.97-104. Available at:

https://doi.org/10.1145/1174429.1174477.

Kajiya, J.T. and Lischinski, D., (1993). Anisotropic reflection models. IEEE Computer Graphics and

Applications, 13(4), pp.25-34. Available at: https://doi.org/10.1109/38.252558.

Kajiya, T. and von Herzen, B., (1984). Ray tracing volume densities. ACM SIGGRAPH Computer Graphics,

18(3), pp.165-174. Available at: https://doi.org/10.1145/964965.808594.

Lengyel, J., Praun, E., Finkelstein, A. and Hoppe, H., (2001). Real-time fur over arbitrary surfaces.

Symposium on Interactive 3D Graphics (I3D) 2001, pp.227-232. Available at:

https://hhoppe.com/fur.pdf.

Marschner, S.R., Cornell University, Jensen, H.W., University of California—San Diego, Cammarano, M.,

Stanford University, Worley, S., Worley Laboratories, Hanrahan, P. and Stanford University, (2003). Light

Scattering from Human Hair Fibers. Available at: http://www.graphics.stanford.edu/papers/hair/hair-

sg03final.pdf [Accessed 16 June 2024].

https://doi.org/10.1007/s00371-016-1252-x
https://s3.cad.rit.edu/cadgallery_production/storage/media/uploads/faculty-s-projects/1918/documents/177/framerate-visibility-thesis.pdf
https://s3.cad.rit.edu/cadgallery_production/storage/media/uploads/faculty-s-projects/1918/documents/177/framerate-visibility-thesis.pdf
https://doi.org/10.1145/1174429.1174477
https://doi.org/10.1109/38.252558
https://doi.org/10.1145/964965.808594
https://hhoppe.com/fur.pdf
http://www.graphics.stanford.edu/papers/hair/hair-sg03final.pdf
http://www.graphics.stanford.edu/papers/hair/hair-sg03final.pdf

Bachelor’s thesis - MODULE 6GST0XF101.2

77

Rapp, M., (2014). Real-Time hair rendering [Master Thesis, Stuttgart Media University]. In Stuttgart

Media University, Computer Science and Media M.Sc.). Available at:

http://markusrapp.de/wordpress/wp-content/uploads/hair/MarkusRapp-MasterThesis-

RealTimeHairRendering.pdf [Accessed 16 June 2024].

Tariq, S., (2007). Fur (using shells and fins). NVIDIA. Available at:

https://developer.download.nvidia.com/SDK/10/direct3d/Source/Fur/doc/FurShellsAndFins.pdf

[Accessed 3 June 2024].

White, M., (2008). Real-Time Optimally Adapting Meshes: Terrain Visualization in Games. International

Journal of Computer Games Technology, 2008, pp.1–7. Available at:

https://doi.org/10.1155/2008/753584.

8.2 Bibliography

Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M. and Hillaire, S., (2018). Real-Time

rendering. In A K Peters/CRC Press eBooks. Available at: https://doi.org/10.1201/b22086.

NVIDIA Corporation, (2004). GPU gems: Programming techniques, tips, and tricks for real-time graphics.

Addison-Wesley.

Shirley, P., Ashikhmin, M., Marschner, S. and Reinhard, E., (2021). Fundamentals of Computer Graphics

(4th ed.). A K Peters/CRC Press.

8.3 Filmography

Acerola, (2023). How are games rendering fur? [Video] YouTube, 30 October. Available at:

https://www.youtube.com/watch?v=9dr-tRQzij4.

CG Cookie - Unity Training, (n.d.). Creating Polygon Hair for Game Characters [Video] YouTube. Available

at: https://www.youtube.com/watch?v=6Wi4-fdeYyM.

http://markusrapp.de/wordpress/wp-content/uploads/hair/MarkusRapp-MasterThesis-RealTimeHairRendering.pdf
http://markusrapp.de/wordpress/wp-content/uploads/hair/MarkusRapp-MasterThesis-RealTimeHairRendering.pdf
https://developer.download.nvidia.com/SDK/10/direct3d/Source/Fur/doc/FurShellsAndFins.pdf
https://doi.org/10.1155/2008/753584
https://doi.org/10.1201/b22086
https://www.youtube.com/watch?v=9dr-tRQzij4
https://www.youtube.com/watch?v=6Wi4-fdeYyM

Bachelor’s thesis - MODULE 6GST0XF101.2

78

Froyok, (2012). Shadow of the Colossus - Fur breakdown [Video] YouTube, 7 October. Available at:

https://www.youtube.com/watch?v=taIuZAGOFTo.

GDC, (2022). Procedural Grass in “Ghost of Tsushima” [Video] YouTube, 14 July. Available at:

https://www.youtube.com/watch?v=Ibe1JBF5i5Y.

SamuelStyles, (2024). MP Fur HorseDemo [Video] YouTube, 21 June. Available at:

https://www.youtube.com/shorts/_C4lptNMAiU.

SimonDev, (2023). How do Major Video Games Render Grass? [Video] YouTube, 6 November. Available

at: https://www.youtube.com/watch?v=bp7REZBV4P4.

8.4 Webography

80.lv. (2018). CGMA Student Project: Hair for Games. [online] Available at: https://80.lv/articles/005cg-

cgma-student-project-hair-for-games/ [Accessed 30 Jun. 2024].

80.lv. (2021). Realistic Dog Portrait: Experimenting with Real-Time Fur. [online] Available at:

https://80.lv/articles/realistic-dog-portrait-experimenting-with-real-time-fur/ [Accessed 30 Jun. 2024].

[ANSWERED], (n.d.). What game engine does Genshin Impact use? Available at:

https://www.dragonflydb.io/faq/genshin-impact-game-engine [Accessed 6 June 2024].

Adobe, (n.d.). What is ray tracing & what does it do? Available at:

https://www.adobe.com/products/substance3d/discover/what-is-ray-tracing.html [Accessed 3 June

2024].

Afanasev, G. (2018). Gen Afanasev | Graphics Programmer blog: Fancy Shaders - Part 2: Shell Rendering.

[online] Gen Afanasev | Graphics Programmer blog. Available at: https://gen-

graphics.blogspot.com/2018/04/fancy-shaders-shell-rendering.html [Accessed 30 Jun. 2024].

Artheroes, (n.d.). Realistic hair and grooming for game characters. Available at:

https://artheroes.co/hair-cards [Accessed 6 June 2024].

Beautypi, (n.d.). Shadertoy. Available at: https://www.shadertoy.com/view/llGSzw [Accessed 16 June

2024].

https://www.youtube.com/watch?v=taIuZAGOFTo
https://www.youtube.com/watch?v=Ibe1JBF5i5Y
https://www.youtube.com/shorts/_C4lptNMAiU
https://www.youtube.com/watch?v=bp7REZBV4P4
https://80.lv/articles/005cg-cgma-student-project-hair-for-games/
https://80.lv/articles/005cg-cgma-student-project-hair-for-games/
https://80.lv/articles/realistic-dog-portrait-experimenting-with-real-time-fur/
https://www.dragonflydb.io/faq/genshin-impact-game-engine
https://www.adobe.com/products/substance3d/discover/what-is-ray-tracing.html
https://gen-graphics.blogspot.com/2018/04/fancy-shaders-shell-rendering.html
https://gen-graphics.blogspot.com/2018/04/fancy-shaders-shell-rendering.html
https://artheroes.co/hair-cards
https://www.shadertoy.com/view/llGSzw

Bachelor’s thesis - MODULE 6GST0XF101.2

79

Bluebird International, (n.d.). What is ray tracing? The future of graphics rendering. Available at:

https://bluebirdinternational.com/what-is-ray-tracing/ [Accessed 3 June 2024].

Chaos, (n.d.). Photorealistic rendering software for artists & designers. Available at:

https://www.chaos.com/photorealistic-rendering [Accessed 3 June 2024].

Creswell, J. (2021). Dark Souls: What Can You Make With the Soul of Sif? [online] CBR. Available at:

https://www.cbr.com/dark-souls-sif-soul-guide/ [Accessed 30 Jun. 2024].

DARK SOULSTM III on Steam, (n.d.). Available at:

https://store.steampowered.com/app/374320/DARK_SOULS_III/ [Accessed 6 June 2024].

Danielson, M. and Yonezawa, B., (2024). Genshin Impact: System requirements for PC & mobile.

ScreenRant, 21 May. Available at: https://screenrant.com/genshin-impact-system-requirements-pc-

mobile-minimum-configuration/#system-requirements-specs-on-android [Accessed 5 June 2024].

Donato, J., (2019). Viva Piñata – Game review. Red Ring Circus, 28 February. Available at:

https://redringcircus.com/2008/04/16/viva-pinata-game-review-updated-2019/ [Accessed 6 June 2024].

Edgardlop (2013). Hair and fur Render Time on characters. [online] Available at:

https://www.reddit.com/r/disney/comments/1t6q37/hair_and_fur_render_time_on_characters/

[Accessed 30 Jun. 2024].

For The Win. (2022). Genshin Impact characters: ages, heights, birthdays, and bios. [online] Available at:

https://ftw.usatoday.com/lists/genshin-impact-characters-age-height-birthday.

Froyok, (n.d.). [Breakdown] Shadow of the Colossus (PAL - PS2) | Froyok - Léna Piquet. Available at:

https://www.froyok.fr/blog/2012-10-breakdown-shadow-of-the-colossus-pal-ps2/ [Accessed 6 June

2024].

Hoyoverse.com. (2024). Genshin Impact – Step Into a Vast Magical World of Adventure. [online]

Available at: https://genshin.hoyoverse.com/en/news/detail/103720 [Accessed 30 Jun. 2024].

GDCVault, (n.d.). Advanced Graphics Summit: Procedural grass in “Ghost of Tsushima.” Available at:

https://www.gdcvault.com/play/1027033/Advanced-Graphics-Summit-Procedural-Grass [Accessed 16

June 2024].

https://bluebirdinternational.com/what-is-ray-tracing/
https://www.chaos.com/photorealistic-rendering
https://www.cbr.com/dark-souls-sif-soul-guide/
https://store.steampowered.com/app/374320/DARK_SOULS_III/
https://screenrant.com/genshin-impact-system-requirements-pc-mobile-minimum-configuration/#system-requirements-specs-on-android
https://screenrant.com/genshin-impact-system-requirements-pc-mobile-minimum-configuration/#system-requirements-specs-on-android
https://redringcircus.com/2008/04/16/viva-pinata-game-review-updated-2019/
https://www.reddit.com/r/disney/comments/1t6q37/hair_and_fur_render_time_on_characters/
https://ftw.usatoday.com/lists/genshin-impact-characters-age-height-birthday
https://www.froyok.fr/blog/2012-10-breakdown-shadow-of-the-colossus-pal-ps2/
https://genshin.hoyoverse.com/en/news/detail/103720
https://www.gdcvault.com/play/1027033/Advanced-Graphics-Summit-Procedural-Grass

Bachelor’s thesis - MODULE 6GST0XF101.2

80

GiM. (n.d.). An Introduction to Shell Based Fur Technique. [online] Available at:

https://gim.studio/animalia/an-introduction-to-shell-based-fur-technique/ [Accessed 30 Jun. 2024].

Gmh, (n.d.). GitHub - gmh5225/Genshin-EasyPeasy-Bypass: A simple bypass of Genshin anti-cheat. Just

run it after starting the game. Available at: https://github.com/gmh5225/Genshin-EasyPeasy-Bypass

[Accessed 5 June 2024].

Groom brushes | ZBrush Docs, (n.d.). Available at: https://help.maxon.net/zbr/en-us/#html/user-

guide/3d-modeling/fibermesh/groom-brushes/groom-

brushes.html?TocPath=User%2520Guide%257C3D%2520Modeling%257CFiberMesh%25C2%25AE%257

C_____2 [Accessed 16 June 2024].

Hecomi, (2021.-a). Unity で URP 向けのファーシェーダを書いてみた(シェル法). 凹みTips, 24 July.

Available at: https://tips.hecomi.com/entry/2021/06/27/185835 [Accessed 16 June 2024].

Hecomi, (2021.-b). Unity で URP 向けのファーシェーダを書いてみた(フィン法). 凹みTips, 24 July.

Available at: https://tips.hecomi.com/entry/2021/07/24/121420 [Accessed 16 June 2024].

Hecomi, (2021.-c). Unity で URP 向けのファーシェーダを書いてみた(毛ポリゴン生成). 凹みTips, 12

August. Available at: https://tips.hecomi.com/entry/2021/08/12/155948 [Accessed 16 June 2024].

Hecomi, (2021.-d). Unity で URP 向けのファーシェーダを書いてみた(動き・アニメーション連携).

凹みTips, 14 August. Available at: https://tips.hecomi.com/entry/2021/08/14/115756 [Accessed 16

June 2024].

Hecomi, (2024). 凹みTips, 31 May. Available at: https://tips.hecomi.com/ [Accessed 5 June 2024].

Hecomi, (n.d.). GitHub - hecomi/UnityFurURP: Fur shader implementation for URP. Available at:

https://github.com/hecomi/UnityFurURP [Accessed 5 June 2024].

Imgur (n.d.). What Video Game Hair Looks Like Without Texture Painted. [online] Imgur. Available at:

https://imgur.com/gallery/what-video-game-hair-looks-like-without-texture-painted-g8vLC [Accessed

30 Jun. 2024].

Jordan Stevens, (n.d.). Lighting Models in Unity. Available at:

https://www.jordanstevenstechart.com/lighting-models [Accessed 16 June 2024].

https://gim.studio/animalia/an-introduction-to-shell-based-fur-technique/
https://github.com/gmh5225/Genshin-EasyPeasy-Bypass
https://help.maxon.net/zbr/en-us/#html/user-guide/3d-modeling/fibermesh/groom-brushes/groom-brushes.html?TocPath=User%2520Guide%257C3D%2520Modeling%257CFiberMesh%25C2%25AE%257C_____2
https://help.maxon.net/zbr/en-us/#html/user-guide/3d-modeling/fibermesh/groom-brushes/groom-brushes.html?TocPath=User%2520Guide%257C3D%2520Modeling%257CFiberMesh%25C2%25AE%257C_____2
https://help.maxon.net/zbr/en-us/#html/user-guide/3d-modeling/fibermesh/groom-brushes/groom-brushes.html?TocPath=User%2520Guide%257C3D%2520Modeling%257CFiberMesh%25C2%25AE%257C_____2
https://help.maxon.net/zbr/en-us/#html/user-guide/3d-modeling/fibermesh/groom-brushes/groom-brushes.html?TocPath=User%2520Guide%257C3D%2520Modeling%257CFiberMesh%25C2%25AE%257C_____2
https://tips.hecomi.com/entry/2021/06/27/185835
https://tips.hecomi.com/entry/2021/07/24/121420
https://tips.hecomi.com/entry/2021/08/12/155948
https://tips.hecomi.com/entry/2021/08/14/115756
https://tips.hecomi.com/
https://github.com/hecomi/UnityFurURP
https://imgur.com/gallery/what-video-game-hair-looks-like-without-texture-painted-g8vLC
https://www.jordanstevenstechart.com/lighting-models

Bachelor’s thesis - MODULE 6GST0XF101.2

81

Maajor, (n.d.). GitHub - maajor/Marschner-Hair-Unity: Implement Marschner Shading Model In Unity.

Available at: https://github.com/maajor/Marschner-Hair-Unity [Accessed 16 June 2024].

Machkovech, S. (2019). Detective Pikachu film review: This is how you adapt a video game for theaters.

[online] Ars Technica. Available at: https://arstechnica.com/gaming/2019/05/detective-pikachu-film-

review-this-is-how-you-adapt-a-video-game-for-theaters/ [Accessed 30 Jun. 2024].

Medium. (2018). Tips & Tricks on hair for Games - 80Level - Medium, 30 June. Available at:

https://medium.com/@EightyLevel/tips-tricks-on-hair-for-games-66367a1b8be7 [Accessed 16 June

2024].

NBC News. (2006). ‘Viva Piñata’ is kid-friendly, and fun for adults. [online] Available at:

https://www.nbcnews.com/id/wbna15835251 [Accessed 30 Jun. 2024].

phort99 (2015). Why your game’s FPS counter should measure milliseconds per frame, not frames per

second. [online] Available at:

https://www.reddit.com/r/gamedev/comments/34z6cv/why_your_games_fps_counter_should_measur

e/ [Accessed 12 Jul. 2024].

Porter, M., (2017). Dark Souls 3 is Bandai Namco’s fastest-selling game ever. IGN, 2 May. Available at:

https://www.ign.com/articles/2016/04/18/dark-souls-3-is-bandai-namcos-fastest-selling-game-ever

[Accessed 6 June 2024].

Samsung Developers. (n.d.). GPUWatch. [online] Available at: https://developer.samsung.com/galaxy-

gamedev/gpuwatch.html.

Softo, (2024.). How to show FPS on Android phones: Xiaomi, Samsung, and other brands, 22 March.

Available at: https://www.softo.org/p/show-fps-on-android-phones-xiaomi-samsung-and-other-brands

[Accessed 6 June 2024].

Souls modding, (n.d.). FromSoftware game engines. Available at:

http://soulsmodding.wikidot.com/topic:engines [Accessed 6 June 2024].

Technologies, U. (n.d.-a). Unity - Manual: Optimizing graphics performance. [online] docs.unity3d.com.

Available at:

https://github.com/maajor/Marschner-Hair-Unity
https://arstechnica.com/gaming/2019/05/detective-pikachu-film-review-this-is-how-you-adapt-a-video-game-for-theaters/
https://arstechnica.com/gaming/2019/05/detective-pikachu-film-review-this-is-how-you-adapt-a-video-game-for-theaters/
https://medium.com/@EightyLevel/tips-tricks-on-hair-for-games-66367a1b8be7
https://www.nbcnews.com/id/wbna15835251
https://www.reddit.com/r/gamedev/comments/34z6cv/why_your_games_fps_counter_should_measure/
https://www.reddit.com/r/gamedev/comments/34z6cv/why_your_games_fps_counter_should_measure/
https://www.ign.com/articles/2016/04/18/dark-souls-3-is-bandai-namcos-fastest-selling-game-ever
https://developer.samsung.com/galaxy-gamedev/gpuwatch.html
https://developer.samsung.com/galaxy-gamedev/gpuwatch.html
https://www.softo.org/p/show-fps-on-android-phones-xiaomi-samsung-and-other-brands
http://soulsmodding.wikidot.com/topic:engines

Bachelor’s thesis - MODULE 6GST0XF101.2

82

https://docs.unity3d.com/2017.3/Documentation/Manual/OptimizingGraphicsPerformance.html

[Accessed 14 Jul. 2024].

Technologies, U. (n.d.-b). Unity - Manual: Shader data types and precision. [online] docs.unity3d.com.

Available at: https://docs.unity3d.com/2017.3/Documentation/Manual/SL-DataTypesAndPrecision.html

[Accessed 14 Jul. 2024].

TheGamedev.Guru, (n.d.). Unity Overdraw: improving the GPU performance of your game. Available at:

https://thegamedev.guru/unity-gpu-performance/overdraw-optimization/ [Accessed 16 June 2024].

The Ryg Blog, (2013). A trip through the Graphics Pipeline 2011: Index, 10 March. Available at:

https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/ [Accessed

16 June 2024].

Tutorials made easy!, (n.d.). Generating Fur in DirectX or OpenGL Easily. Available at:

https://www.xbdev.net/directx3dx/specialX/Fur/index.php [Accessed 16 June 2024].

TurboSquid, (n.d.). 3D Character140 Rigged Horse. Available at: https://www.turbosquid.com/3d-

models/character140-rigged-horse-1761468 [Accessed 15 June 2024].

Tyler, J.E., (2021). Genshin Impact beats Fortnite, GTA 5 revenue in best first year ever. ScreenRant, 4

November. Available at: https://screenrant.com/genshin-impact-fortnite-gta5-first-year-revenue/

[Accessed 6 June 2024].

Unity, (n.d.-a). Detecting performance bottlenecks with Unity Frame Timing Manager. [online] Available

at: https://unity.com/blog/engine-platform/detecting-performance-bottlenecks-with-unity-frame-

timing-manager [Accessed 12 Jul. 2024].

Unity, (n.d.-b). How to use Unity’s memory profiling tools. Available at: https://unity.com/how-to/use-

memory-profiling-unity [Accessed 6 June 2024].

Unity Forum, (n.d.). How to view used GPU’s memory. Available at:

https://forum.unity.com/threads/how-to-view-used-gpus-memory.1176740/ [Accessed 5 June 2024].

Unity Technologies, (n.d.-a). Create high-quality graphics and stunning visuals. Available at:

https://unity.com/features/high-definition-render-pipeline [Accessed 3 June 2024].

https://docs.unity3d.com/2017.3/Documentation/Manual/OptimizingGraphicsPerformance.html
https://docs.unity3d.com/2017.3/Documentation/Manual/SL-DataTypesAndPrecision.html
https://thegamedev.guru/unity-gpu-performance/overdraw-optimization/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://www.xbdev.net/directx3dx/specialX/Fur/index.php
https://www.turbosquid.com/3d-models/character140-rigged-horse-1761468
https://www.turbosquid.com/3d-models/character140-rigged-horse-1761468
https://screenrant.com/genshin-impact-fortnite-gta5-first-year-revenue/
https://unity.com/blog/engine-platform/detecting-performance-bottlenecks-with-unity-frame-timing-manager
https://unity.com/blog/engine-platform/detecting-performance-bottlenecks-with-unity-frame-timing-manager
https://unity.com/how-to/use-memory-profiling-unity
https://unity.com/how-to/use-memory-profiling-unity
https://forum.unity.com/threads/how-to-view-used-gpus-memory.1176740/
https://unity.com/features/high-definition-render-pipeline

Bachelor’s thesis - MODULE 6GST0XF101.2

83

Unity Technologies, (n.d.-b). Download archive. Available at: https://unity.com/releases/editor/archive

[Accessed 3 June 2024].

Unity Technologies, (n.d.-c). Fur shader. Available at: https://forum.unity.com/threads/fur-shader.4581/

[Accessed 6 June 2024].

Unity Technologies. (n.d.-d). LTS vs Tech Stream: Choose the right Unity release for you. [online]

Available at: https://unity.com/releases/editor/whats-new/lts-vs-tech-stream [Accessed 3 June 2024].

Unity Technologies. (n.d.-e). Universal Render Pipeline overview. [online] Available at:

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/index.html

[Accessed 3 June 2024].

Unity Technologies. (n.d.-f). Unity - Manual: ScriptableObject. [online] Available at:

https://docs.unity3d.com/Manual/class-ScriptableObject.html [Accessed 6 June 2024].

Unity Technologies. (n.d.-g). Using the Built-in Render Pipeline. [online] Available at:

https://docs.unity3d.com/Manual/built-in-render-pipeline.html [Accessed 3 June 2024].

Unity-Technologies. (n.d.-h). Graphics/Packages/com.unity.render-

pipelines.universal/ShaderLibrary/Lighting.hlsl at master · Unity-Technologies/Graphics. GitHub. [online]

Available at: https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-

pipelines.universal/ShaderLibrary/Lighting.hlsl [Accessed 6 June 2024].

Wikipedia. (2024). Samsung Galaxy A50. [online] Available at:

https://en.wikipedia.org/wiki/Samsung_Galaxy_A50 [Accessed 4 June 2024].

Wikipedia contributors. (2020). Dark Souls III. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Dark_Souls_III [Accessed 6 June 2024].

Wikipedia contributors. (2023). Viva Piñata. Wikipedia; Wikimedia Foundation. [online] Available at:

https://en.wikipedia.org/wiki/Viva_Pi%C3%B1ata [Accessed 6 June 2024].

Wikipedia contributors. (2024.-a). Shadow of the Colossus. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Shadow_of_the_Colossus [Accessed 6 June 2024].

https://unity.com/releases/editor/archive
https://forum.unity.com/threads/fur-shader.4581/
https://unity.com/releases/editor/whats-new/lts-vs-tech-stream
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/index.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/built-in-render-pipeline.html
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://en.wikipedia.org/wiki/Samsung_Galaxy_A50
https://en.wikipedia.org/wiki/Dark_Souls_III
https://en.wikipedia.org/wiki/Viva_Pi%C3%B1ata
https://en.wikipedia.org/wiki/Shadow_of_the_Colossus

Bachelor’s thesis - MODULE 6GST0XF101.2

84

Wikipedia contributors. (2024.-b). Flicker fusion threshold. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Flicker_fusion_threshold#Display_frame_rate [Accessed 5 June 2024].

Wikipedia contributors. (2024.-c.). Moore’s law. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Moore%27s_law [Accessed 5 June 2024].

Wikipedia contributors. (2024.-d). Genshin Impact. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Genshin_Impact [Accessed 6 June 2024].

Wikipedia contributors. (2024.-e). Bandai Namco Entertainment. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Bandai_Namco_Entertainment [Accessed 6 June 2024].

Wikipedia contributors. (2024.-f). Rare (company). Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Rare_(company) [Accessed 6 June 2024].

Wikipedia contributors. (2024.-g). Xbox Game Studios. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/Xbox_Game_Studios [Accessed 6 June 2024].

Wikipedia contributors. (2024.-h). MiHoYo. [online] Available at: https://en.wikipedia.org/wiki/MiHoYo

[Accessed 6 June 2024].

Wikipedia contributors. (2024.-i). FromSoftware. Wikipedia. [online] Available at:

https://en.wikipedia.org/wiki/FromSoftware [Accessed 6 June 2024].

X (formerly Twitter). (2024). x.com. [online] Available at:

https://x.com/cosmicmatt/status/1731083457290555525/photo/2 [Accessed 30 Jun. 2024].

XBDEV.net. (n.d.). Fur rendering. [online] Available at:

https://www.xbdev.net/directx3dx/specialX/Fur/index.php [Accessed 3 June 2024].

https://en.wikipedia.org/wiki/Flicker_fusion_threshold#Display_frame_rate
https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Genshin_Impact
https://en.wikipedia.org/wiki/Bandai_Namco_Entertainment
https://en.wikipedia.org/wiki/Rare_(company)
https://en.wikipedia.org/wiki/Xbox_Game_Studios
https://en.wikipedia.org/wiki/MiHoYo
https://en.wikipedia.org/wiki/FromSoftware
https://x.com/cosmicmatt/status/1731083457290555525/photo/2
https://www.xbdev.net/directx3dx/specialX/Fur/index.php

Bachelor’s thesis - MODULE 6GST0XF101.2

85

9. Figures

Figure 1 - Hair and fur Render Time on characters. (Edgardlop, 2013) .. 2

Figure 2 - Fur generation example from Real-Time Fur over Arbitrary Surfaces. (Lengyel et al., 2001) 5

Figure 3 - 80.lv student hair for games from Greg Mourino. (80.lv, 2018) & Detective Pikachu film

caption. (Machkovech, 2019)... 6

Figure 4 - Realistic Dog Portrait: Experimenting with Real-Time Fur. (80.lv, 2021) 7

Figure 5 - Unity download archive. (Unity Technologies, n.d.-b) ... 8

Figure 6 - Unity Hub 3.7.0 Installs screenshot, (Styles, 2024) ... 9

Figure 7 – A shell-based fur strand example. (GiM, n.d.) ... 10

Figure 8 - Visualisation of shells on low-poly mesh. (GiM, n.d.) ... 11

Figure 9 - Example of coloured Shell-based fur. (Afanasev, 2018) ... 11

Figure 10 - Illustration of fin extrusion. (Lengyel et al., 2001) .. 12

Figure 11 - Fin generation example and illustration. (Tariq, 2007) .. 13

Figure 12 - Polygonal hair example from The Last of Us. (Imgur, n.d.) .. 14

Figure 13 - Vertex shader with adaptive mesh according to LOD. (GDCVault, n.d.) 15

Figure 14 - Shadow of Colossus in game caption of the player looking at a Colossus. (Froyok, n.d.) 16

Figure 15 - Viva Piñata in Game Caption. (NBC News, 2006) ... 17

Figure 16 - Dark Souls III Wolf boss (Sif). (Creswell, 2021) ... 18

Figure 17 - Genshin impact illustration. (For The Win, 2022) ... 19

Figure 18 - In-game caption of Genshin Impact. (X (formerly Twitter), 2024) ... 19

Figure 19 - Genshin impact caption with coloured rectangle highlighting specific elements. (X (formerly

Twitter), 2024) .. 26

Figure 20 - Caption in Unity editor of the cloned github project from Hecomi showing shell, fin, and

geometry shader from left to right. (Styles, 2024) ... 27

Figure 21 - Caption in Unity editor of the cloned github project from Hecomi showing shell. (Styles, 2024)

 .. 27

Figure 22 - Caption in Unity editor of the cloned github project from Hecomi showing shell material

parameters . (Styles, 2024) ... 28

Figure 23 - Caption in Unity editor of the project from Hecomi showing measures taken. (Styles, 2024) 29

Figure 24 - Capture of the Render Debugger from Unity. (Styles, 2024).. 31

Figure 25 - Unity editor caption of the Memory Profiler tool indicating the difference memory

allocations. (Styles, 2024) ... 32

Figure 26 - Unity editor Statistics tool. (Styles, 2024) ... 33

Figure 27 - Unity Profiler (top) and Timeline (bottom). (Styles, 2024) ... 34

Figure 28 - Unity Rendering Debugger tool showing the Display Stats category. (Styles, 2024) 34

Figure 29 - Unity editor caption of the Memory Profiler tool. (Styles, 2024) .. 35

Figure 30 - Unity editor screenshot of the Frame Debugger tool. (Styles, 2024) 36

Figure 31 - RenderDoc used on Hecomi's project. (Styles, 2024) ... 36

Figure 32 - NVIDIA Nsight Graphics used on the initial approach project. (Styles, 2024) 37

Bachelor’s thesis - MODULE 6GST0XF101.2

86

Figure 33 - Combination of screenshots resuming the process to activate GPUWatch on Samsung Galaxy

A50. (Styles, 2024) ... 38

Figure 34 - UnityHub screenshot of the Installs category showing the 2022.3.24f1 LTS version. (Styles,

2024) ... 40

Figure 35 - Unity editor Package manager tool showing the installed packages. (Styles, 2024) 40

Figure 36 - Visual Studio IDE Installer showing the packages category. (Styles, 2024) 41

Figure 37 - Unity editor NaïveShell project exposing the Canvas prefab in the Hierarchy. (Styles, 2024) . 42

Figure 38 - Unity editor screenshots of two Inspectors exposing the SimpleShell script and HLSLGeom

shader material parameters. (Styles, 2024) .. 43

Figure 39 - Unity scene showing attempts at Shell and Fin shader merging. (Styles, 2024) 43

Figure 40 - Unity editor screenshot showing the HLSLGeom1 scene with light information in the

inspector. (Styles, 2024) ... 44

Figure 41 - Unity editor screenshot showing the HLSL_ComplexScene. (Styles, 2024) 44

Figure 42 - Capture of the Unity Build Settings window. (Styles, 2024) ... 45

Figure 43 - Unity editor screenshot of the Inspector window showing the relation between player input

and HLSL shader. (Styles, 2024) .. 45

Figure 44 - Unity editor screenshot showing the rigger horse from TruboSquid with the HLSL shader on

it. (Styles, 2024) .. 46

Figure 45 - Unity capture showing the Sphere object's inspector. (Styles, 2024) 47

Figure 46 - Unity editor showing the mesh layering from the initial approach project. (Styles, 2024) 47

Figure 47 - Capture of the SimpleShell.cs script in the Visual Studio IDE. (Styles, 2024) 48

Figure 48 - Capture of Hugo Elias’ hashing function from the Shell.shader script in the Visual Studio IDE.

(Styles, 2024) ... 48

Figure 49 - Capture of the Vertex shader code from the Shell.shader script in the Visual Studio IDE.

(Styles, 2024) ... 49

Figure 50 - Capture of the fragment shader code from the Shell.shader script in the Visual Studio IDE.

(Styles, 2024) ... 50

Figure 51 - Capture of the initial approach scene in the Unity editor. (Styles, 2024) 51

Figure 52 - Unity editor capture of the HLSLGeom shader's material showing parameters in the inspector

window. (Styles, 2024) .. 52

Figure 53 - Capture of the Geometry shader code from the Fur.hlsl script in the Visual Studio IDE. (Styles,

2024) ... 53

Figure 54 - Unity editor capture of the HLSLGeom scene. (Styles, 2024) ... 53

Figure 55 - Unity editor capture of the material parameters in the inspector window. (Styles, 2024) 54

Figure 56 - Unity editor capture of the HLSL_ComplexObject scene showing the riggerd horse without

colour (left) and with colour (right). (Styles, 2024) .. 55

Figure 57 - Unity editor inspector window capture showing the shell detail parameters. (Styles, 2024) . 55

Figure 58 - Unity editor capture of three shader variations showing the rigged horse with short (right),

long (middle), and red tinted (left) fur. (Styles, 2024) .. 56

Figure 59 - Unity editor inspector capture showing the Animator component. (Styles, 2024) 56

Figure 60 - Unity editor Hierarchy capture showing the Canvas prefab hierarchy. (Styles, 2024) 57

Bachelor’s thesis - MODULE 6GST0XF101.2

87

Figure 61 - Unity editor inspector window capture showing the EventSytem component. (Styles, 2024) 57

Figure 62 - Unity editor capture of the Project Settings window showing the Active Input Handling

parameter. (Styles, 2024).. 58

Figure 63 - Hecomi's project measurements, (Styles, 2024) .. 59

Figure 64 - Unity editor bottom left UI options showing the release (left) and debug (right) presets.

(Styles, 2024) ... 60

Figure 65 - Measurement of the Initial approach project. (Styles, 2024) .. 60

Figure 66 - Unity editor capture showing the measurement of the NaïveShell scene. (Styles, 2024) 61

Figure 67 - Unity editor capture showing the Memory Profiler on the NaïveShell scene. (Styles, 2024) .. 61

Figure 68 - Screen capture of the Android Galaxy A50 measurements for the NaïveShell scene. (Styles,

2024) ... 62

Figure 69 - Measurements of the HLSL Shader project. (Styles, 2024) .. 63

Figure 70 - Unity editor capture showing the measurement of the HLSLGeom scene. (Styles, 2024) 63

Figure 71 - Unity editor capture showing the Memory Profiler on the HLSLGeom scene. (Styles, 2024).. 64

Figure 72 - Screen capture of the Android Galaxy A50 measurements for the HLSLGeom scene. (Styles,

2024) ... 64

Figure 73 - Unity editor capture showing the measurement of the HLSLGeom1 scene. (Styles, 2024) 65

Figure 74 - Measurement comparison on the HLSL Shader project with and without light 65

Figure 75 - Screen capture of the Android Galaxy A50 measurements for the HLSLGeom1 scene. (Styles,

2024) ... 66

Figure 76 - Unity editor capture showing the measurement of the HLSL_ComplexeScene scene. (Styles,

2024) ... 66

Figure 77 - Measurement of the HLSL Shader in the complex scene project. (Styles, 2024) 67

Figure 78 - Capture of RenderDoc usage on the HLSL_ComplexeScene scene. (Styles, 2024) 67

Figure 79 - Unity editor capture showing the Memory Profiler on the HLSL_ComplexeScene scene.

(Styles, 2024) ... 68

Figure 80 - Screen capture of the Android Galaxy A50 measurements for the HLSL_ComplexeScene

scene. (Styles, 2024) ... 68

Figure 81 - Measurements of the HLSL Complex object scene. (Styles, 2024) ... 69

Figure 82 - Unity editor capture showing the measurement of the HLSL_ComplexeObject scene. (Styles,

2024) ... 69

Figure 83 - Unity editor capture showing the Memory Profiler on the HLSL_ComplexeObject scene.

(Styles, 2024) ... 70

Figure 84 - Screen capture of the Android Galaxy A50 measurements for the HLSL_ComplexeObject

scene. (Styles, 2024) ... 70

Figure 85 - Measurements of the GPU frame time and comparison on all projects. (Styles, 2024) 71

Figure 86 - Measurements of the multiplication factor and comparison on all projects. (Styles, 2024) ... 71

Figure 87 - Measurements of the graphical memory allocation and comparison on all projects. (Styles,

2024) ... 72

Figure 88 - Measurements of the frames per second and comparison on all projects. (Styles, 2024) 72

Bachelor’s thesis - MODULE 6GST0XF101.2

88

10. Appendices

Appendix A: Interview of David Sena

Bachelor’s thesis - MODULE 6GST0XF101.2

89

Appendix B: Interview of ChatGPT

Bachelor’s thesis - MODULE 6GST0XF101.2

90

Bachelor’s thesis - MODULE 6GST0XF101.2

91

Appendix C: Shell_Original.shader code

Shader "Custom/Fur_Original" {
 SubShader {
 Tags {
 "LightMode" = "ForwardBase"
 }

 Pass {
 Cull Off

 CGPROGRAM

 #pragma vertex vp
 #pragma fragment fp

 #include "UnityPBSLighting.cginc"
 #include "AutoLight.cginc"

 struct VertexData {
 float4 vertex : POSITION;
 float3 normal : NORMAL;
 float2 uv : TEXCOORD0;
 };

 struct v2f {
 float4 pos : SV_POSITION;
 float2 uv : TEXCOORD0;
 float3 normal : TEXCOORD1;
 float3 worldPos : TEXCOORD2;
 };

 int _ShellIndex;
 int _ShellCount;
 float _ShellLength;
 float _Density;
 float _NoiseMin, _NoiseMax;
 float _Thickness;
 float _Attenuation;
 float _OcclusionBias;
 float _ShellDistanceAttenuation;
 float _Curvature;
 float _DisplacementStrength;
 float3 _ShellColor;
 float3 _ShellDirection;

 float hash(uint n) {
 // Hash from Hugo Elias
 n = (n << 13U) ^ n;
 n = n * (n * n * 15731U + 0x789221U) + 0x1376312589U;
 return float(n & uint(0x7fffffffU)) / float(0x7fffffff);
 }

 v2f vp(VertexData v) {

Bachelor’s thesis - MODULE 6GST0XF101.2

92

 v2f i;

 float shellHeight = (float)_ShellIndex / (float)_ShellCount;

 shellHeight = pow(shellHeight, _ShellDistanceAttenuation);

 v.vertex.xyz += v.normal.xyz * _ShellLength * shellHeight;

 i.normal = normalize(UnityObjectToWorldNormal(v.normal));

 float k = pow(shellHeight, _Curvature);

 v.vertex.xyz += _ShellDirection * k * _DisplacementStrength;

 i.pos = UnityObjectToClipPos(v.vertex);

 i.uv = v.uv;

 return i;
 }

 float4 fp(v2f i) : SV_TARGET {
 float2 newUV = i.uv * _Density;

 float2 localUV = frac(newUV) * 2 - 1;

 float localDistanceFromCenter = length(localUV);

 uint2 tid = newUV;
 uint seed = tid.x + 100 * tid.y + 100 * 10;

 float shellIndex = _ShellIndex;
 float shellCount = _ShellCount;

 float rand = lerp(_NoiseMin, _NoiseMax, hash(seed));

 float h = shellIndex / shellCount;

 int outsideThickness = (localDistanceFromCenter) > (_Thickness
 * (rand - h));

 if (outsideThickness && _ShellIndex > 0) discard;

 float ndotl = DotClamped(i.normal, _WorldSpaceLightPos0) *
 0.5f + 0.5f;

 ndotl = ndotl * ndotl;

 float ambientOcclusion = pow(h, _Attenuation);

 ambientOcclusion += _OcclusionBias;

 ambientOcclusion = saturate(ambientOcclusion);

 return float4(_ShellColor * ndotl * ambientOcclusion, 1.0);
 }
 ENDCG}}}

Bachelor’s thesis - MODULE 6GST0XF101.2

93

Appendix D: Shell.shader code

Shader "Custom/Fur" {
 SubShader {
 Tags {
 "RenderType" = "Transparent"
 "RenderPipeline" = "UniversalPipeline"
 "UniversalMaterialType" = "Lit"
 "LightMode" = "UniversalForward"
 "Queue" = "Transparent"
 }

 Pass
 {
 //Shader parameters
 LOD 100
 Cull Back

 Name "ForwardLit"
 Tags{"LightMode" = "UniversalForward"}

 //Beginning of the program
 HLSLPROGRAM

 //Declaraction of Vertex and Fragment Shader
 #pragma vertex vert
 #pragma fragment frag

 //Inclusion of Unity Libraries
 #include "Packages/com.unity.render-
pipelines.universal/ShaderLibrary/Core.hlsl"
 #include "Packages/com.unity.render-
pipelines.universal/Shaders/LitInput.hlsl"

 //Attribute struct
 struct Attributes
 {
 float4 vertex : POSITION;
 float3 normal : NORMAL;
 float2 uv : TEXCOORD0;
 };

 //Varyings is the strucs that replaces v2f (Vertex to Frament)
 struct Varyings
 {
 float4 pos : SV_POSITION;
 float2 uv : TEXCOORD0;
 float3 normal : TEXCOORD1;
 float3 worldPos : TEXCOORD2;
 };

 CBUFFER_START(UnityPerMaterial)
 int _ShellIndex;

Bachelor’s thesis - MODULE 6GST0XF101.2

94

 int _ShellCount;
 float _ShellLength;
 float _Density;
 float _NoiseMin, _NoiseMax;
 float _Thickness;
 float _Attenuation;
 float _OcclusionBias;
 float _ShellDistanceAttenuation;
 float _Curvature;
 float _DisplacementStrength;
 float3 _ShellColor;
 float3 _ShellDirection;
 CBUFFER_END

 float hash(uint n)
 {
 // integer hash copied from Hugo Elias
 n = (n << 13U) ^ n;
 n = n * (n * n * 15731U + 0x789221U) + 0x1376312589U;
 return float(n & uint(0x7fffffffU)) / float(0x7fffffff);
 }

 //The Vertex shader
 Varyings vert(Attributes IN)
 {
 Varyings OUT;

 float shellHeight = (float)_ShellIndex / (float)_ShellCount;

 shellHeight = abs(pow(shellHeight,
_ShellDistanceAttenuation));

 IN.vertex.xyz += IN.normal.xyz * _ShellLength * shellHeight;

 OUT.normal = normalize(TransformObjectToWorldNormal(IN.normal));

 float k = pow(shellHeight, _Curvature);

 IN.vertex.xyz += _ShellDirection * k * _DisplacementStrength;

 OUT.pos = TransformObjectToHClip(IN.vertex);
 OUT.uv = IN.uv;

 return OUT;
 }

 half4 frag(Varyings IN) : SV_Target
 {
 float2 newUV = IN.uv * _Density;
 float2 localUV = frac(newUV) * 2 - 1;
 float localDistanceFromCenter = length(localUV);

 uint2 tid = newUV;
 uint seed = tid.x + 100 * tid.y + 100 * 10;

 // instead of (float)_ShellIndex && (float)_ShellCount

Bachelor’s thesis - MODULE 6GST0XF101.2

95

 float shellIndex = _ShellIndex;
 float shellCount = _ShellCount;

 //Lerp between min and max noise according to random generator
function
 float rand = lerp(_NoiseMin, _NoiseMax, hash(seed));

 // This is the normalized shell height as in the vertex shader
 float h = shellIndex / shellCount;

 int outsideThickness = (localDistanceFromCenter) > (_Thickness
* (rand - h));

 if (outsideThickness && _ShellIndex > 0)
 {
 discard;
 }

 float ndotl = clamp(dot(IN.normal, _MainLightPosition),0,1) *
0.5f + 0.5f;

 ndotl = ndotl * ndotl;

 float ambientOcclusion = pow(h, _Attenuation);
 ambientOcclusion += _OcclusionBias;
 ambientOcclusion = saturate(ambientOcclusion);

 return float4(_ShellColor * ndotl * ambientOcclusion, 1.0);

 }
 ENDHLSL
 }
 }

}

Bachelor’s thesis - MODULE 6GST0XF101.2

96

Appendix E: SimpleShell.cs code

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.InputSystem;

public class SimpleShell : MonoBehaviour {
 public Mesh shellMesh;
 public Shader shellShader;

 public bool updateStatics = true;

 [Range(1, 256)] public int shellCount = 16;
 [Range(0.0f, 1.0f)] public float shellLength = 0.15f;
 [Range(0.01f, 3.0f)] public float distanceAttenuation = 1.0f;
 [Range(1.0f, 1000.0f)] public float density = 100.0f;
 [Range(0.0f, 1.0f)] public float noiseMin = 0.0f;
 [Range(0.0f, 1.0f)] public float noiseMax = 1.0f;
 [Range(0.0f, 10.0f)] public float thickness = 1.0f;
 [Range(0.0f, 1.0f)] public float curvature = 1.0f;
 [Range(0.0f, 1.0f)] public float displacementStrength = 0.1f;
 [Range(0.0f, 5.0f)] public float occlusionAttenuation = 1.0f;
 [Range(0.0f, 1.0f)] public float occlusionBias = 0.0f;
 public Color shellColor;

 private Material shellMaterial;
 private GameObject[] shells;

 public Vector3 direction = new Vector3(0, 0, 0);
 private Vector3 displacementDirection = new Vector3(0, 0, 0);

 void OnEnable() {
 shellMaterial = new Material(shellShader);

 shells = new GameObject[shellCount];

 for (int i = 0; i < shellCount; ++i) {
 shells[i] = new GameObject("Shell " + i.ToString());
 shells[i].AddComponent<MeshFilter>();
 shells[i].AddComponent<MeshRenderer>();

 shells[i].GetComponent<MeshFilter>().mesh = shellMesh;
 shells[i].GetComponent<MeshRenderer>().material = shellMaterial;
 shells[i].transform.SetParent(this.transform, false);

 shells[i].GetComponent<MeshRenderer>().material.SetInt("_ShellCount",
shellCount);
 shells[i].GetComponent<MeshRenderer>().material.SetInt("_ShellIndex", i);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_ShellLength",
shellLength);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Density",
density);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Thickness",
thickness);

Bachelor’s thesis - MODULE 6GST0XF101.2

97

 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Attenuation",
occlusionAttenuation);

shells[i].GetComponent<MeshRenderer>().material.SetFloat("_ShellDistanceAttenuation",
distanceAttenuation);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Curvature",
curvature);

shells[i].GetComponent<MeshRenderer>().material.SetFloat("_DisplacementStrength",
displacementStrength);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_OcclusionBias",
occlusionBias);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_NoiseMin",
noiseMin);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_NoiseMax",
noiseMax);
 shells[i].GetComponent<MeshRenderer>().material.SetVector("_ShellColor",
shellColor);
 }
 }

 void Update() {
 float velocity = 1.0f;
 Vector3 currentPosition = this.transform.position;
 direction.Normalize();
 currentPosition += direction * velocity * Time.deltaTime;
 this.transform.position = currentPosition;

 displacementDirection -= direction * Time.deltaTime * 10.0f;
 if (direction == Vector3.zero)
 displacementDirection.y -= 10.0f * Time.deltaTime;

 if (displacementDirection.magnitude > 1) displacementDirection.Normalize();

 if (updateStatics) {
 for (int i = 0; i < shellCount; ++i) {
 shells[i].GetComponent<MeshRenderer>().material.SetInt("_ShellCount",
shellCount);
 shells[i].GetComponent<MeshRenderer>().material.SetInt("_ShellIndex", i);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_ShellLength",
shellLength);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Density",
density);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Thickness",
thickness);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Attenuation",
occlusionAttenuation);

shells[i].GetComponent<MeshRenderer>().material.SetFloat("_ShellDistanceAttenuation",
distanceAttenuation);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_Curvature",
curvature);

shells[i].GetComponent<MeshRenderer>().material.SetFloat("_DisplacementStrength",
displacementStrength);

Bachelor’s thesis - MODULE 6GST0XF101.2

98

shells[i].GetComponent<MeshRenderer>().material.SetFloat("_OcclusionBias",
occlusionBias);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_NoiseMin",
noiseMin);
 shells[i].GetComponent<MeshRenderer>().material.SetFloat("_NoiseMax",
noiseMax);
 shells[i].GetComponent<MeshRenderer>().material.SetVector("_ShellColor",
shellColor);

shells[i].GetComponent<MeshRenderer>().material.SetVector("_ShellDirection",
displacementDirection);
 }
 }
 }

 void OnDisable() {
 for (int i = 0; i < shells.Length; ++i) {
 Destroy(shells[i]);
 }

 shells = null;
 }

 public void OnMove(InputValue value)
 {
 Vector2 movement = value.Get<Vector2>();
 direction.x = movement.x;
 direction.z = movement.y;
 }
 public void OnElevate(InputValue value)
 {
 float movement = value.Get<float>();
 direction.y = movement;
 }
}

Bachelor’s thesis - MODULE 6GST0XF101.2

99

Appendix F: SimpleCameraController.cs code

using UnityEngine;

namespace UnityTemplateProjects
{
 public class SimpleCameraController : MonoBehaviour
 {
 void Update()
 {
 Vector3 direction = new Vector3();
 if (Input.GetKey(KeyCode.W))
 {
 direction.z += Time.deltaTime;
 }
 if (Input.GetKey(KeyCode.S))
 {
 direction.z -= Time.deltaTime;
 }
 if (Input.GetKey(KeyCode.A))
 {
 direction.x -= Time.deltaTime;
 }
 if (Input.GetKey(KeyCode.D))
 {
 direction.x += Time.deltaTime;
 }
 if (Input.GetKey(KeyCode.Q))
 {
 direction.y -= Time.deltaTime;
 }
 if (Input.GetKey(KeyCode.E))
 {
 direction.y += Time.deltaTime;
 }
 transform.position += direction.normalized * Time.deltaTime;

 if (Input.GetKey(KeyCode.Escape))
 {
 Application.Quit();
 #if UNITY_EDITOR
 UnityEditor.EditorApplication.isPlaying = false;
 #endif
 }
 }
 }

}

Bachelor’s thesis - MODULE 6GST0XF101.2

100

Appendix G: HLSLGeom.shader code

Shader "Custom/HLSLGeom" {
 Properties
 {

 [Header(Shell Property)][Space]
 [IntRange] _FurLayers("NumberOfShells", Range(2, 24)) = 24
 _ShellSize("Shell Size", range(0.01, 1.0)) = 1.0
 _ShellDirection("Shell Direction", vector) = (0, 0, 0, 0)
 _DisplacementStrength("Displacement Strenght", range(0.0, 0.99)) = 0.5

 [Header(Shell Color)][Space]
 _BaseColor("Base color", Color) = (0, 0.5, 0, 1) // Color of the lowest layer
 _TopColor("Top color", Color) = (0, 1, 0, 1) // Color of the highest layer
 _DetailTextureA("Detail Texture A", 2D) = "white" {} // Texture A used to clip
layers
 _TextureInfluenceA("Texture A Influence", Range(0, 1)) = 1 // The influence of
Texture A
 _DetailTextureB("Detail Texture B", 2D) = "white" {} // Texture B used to clip
layers
 _TextureInfluenceB("Texture B Influence", Range(0, 1)) = 1 // The influence of
Texture B

 [Header(Shell Basics)][Space]
 _occlusion("Occulsion", Range(0, 1)) = 0
 _smoothness("Roughness", Range(0, 1)) = 0
 _metallic("Metalness", Range(0, 1)) = 0
 _emission("Emissive", Color) = (0, 0, 0, 0)
 }

 SubShader {

 // URP prerequisites
 Tags{"RenderType" = "Opaque" "RenderPipeline" = "UniversalPipeline"
"IgnoreProjector" = "True"}

 // Forward Lit Pass
 Pass {

 Name "ForwardLit"
 Tags{"LightMode" = "UniversalForward"}
 Cull Back

 HLSLPROGRAM
 // Signal this shader requires geometry function support
 #pragma prefer_hlslcc gles
 #pragma exclude_renderers d3d11_9x
 #pragma target 2.0
 #pragma require geometry

 // Lighting and shadow keywords
 #pragma multi_compile _ _MAIN_LIGHT_SHADOWS
 #pragma multi_compile _ _MAIN_LIGHT_SHADOWS_CASCADE
 #pragma multi_compile _ _ADDITIONAL_LIGHTS

Bachelor’s thesis - MODULE 6GST0XF101.2

101

 #pragma multi_compile _ _ADDITIONAL_LIGHT_SHADOWS
 #pragma multi_compile _ _SHADOWS_SOFT

 // Register our functions
 #pragma vertex Vertex
 #pragma geometry Geometry
 #pragma fragment Fragment

 // Incude our logic file
 #include "Fur.hlsl"

 ENDHLSL
 }

 Pass
{

 Name "ShadowCaster"
 Tags {"LightMode" = "ShadowCaster"}

 HLSLPROGRAM
 // Signal this shader requires geometry function support
 #pragma prefer_hlslcc gles
 #pragma exclude_renderers d3d11_9x
 #pragma target 2.0
 #pragma require geometry

 // Support all the various light types and shadow paths
 #pragma multi_compile_shadowcaster

 // Register our functions
 #pragma vertex Vertex
 #pragma geometry Geometry
 #pragma fragment Fragment

 // A custom keyword to modify logic during the shadow caster pass
 #define SHADOW_CASTER_PASS
 // Incude our logic file
 #include "Fur.hlsl"

 ENDHLSL
 }
 }
}

Bachelor’s thesis - MODULE 6GST0XF101.2

102

Appendix H: Fur.hlsl code

#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
#include "Common.hlsl"

struct Attributes {
 float4 positionOS : POSITION;
 float3 normalOS : NORMAL;
 float4 tangentOS : TANGENT;
 float2 uv : TEXCOORD0;
};

struct VertexOutput {
 float3 positionWS : TEXCOORD0;
 float3 normalWS : TEXCOORD1;
 float2 uv : TEXCOORD2;
};

struct GeometryOutput {
 float3 uv : TEXCOORD0;
 float3 positionWS : TEXCOORD1;
 float3 normalWS : TEXCOORD2;
 float4 positionCS : SV_POSITION;
};

// Properties
//Values used to change "transform" of the Shells
float _ShellSize;
float4 _ShellDirection;
float _DisplacementStrength;
float _Curvature;

//Color properties
float4 _BaseColor;
float4 _TopColor;
// These two textures are combined to create the fur pattern in the fragment function
TEXTURE2D(_DetailTextureA); SAMPLER(sampler_DetailTextureA); float4 _DetailTextureA_ST;
float _TextureInfluenceA;
TEXTURE2D(_DetailTextureB); SAMPLER(sampler_DetailTextureB); float4 _DetailTextureB_ST;
float _TextureInfluenceB;

half _metallic;
half3 _specular;
half _smoothness;
half _occlusion;
half3 _emission;
half _alpha;

uint _FurLayers;

// Vertex functions
VertexOutput Vertex(Attributes IN)
{
 // Initialize the output struct
 VertexOutput output = (VertexOutput)0;

Bachelor’s thesis - MODULE 6GST0XF101.2

103

 // Calculate position and normal in world space
 VertexPositionInputs vertexInput = GetVertexPositionInputs(IN.positionOS.xyz);
 VertexNormalInputs normalInput = GetVertexNormalInputs(IN.normalOS, IN.tangentOS);
 output.positionWS = vertexInput.positionWS;
 output.normalWS = normalInput.normalWS;

 // Pass through the UV
 output.uv = IN.uv;
 return output;
}

// Geometry functions

// This function sets values in output after calculating position based on height
void SetupVertex(in VertexOutput input, inout GeometryOutput output, float height)
{

 // Extrude the position from the normal based on the height
 float3 positionWS = input.positionWS + input.normalWS * (height * _ShellSize);

 //Move shell positions according to the _ShellDirection higher layers are more
impacted by the height
 positionWS -= _ShellDirection * (height * _ShellSize * _DisplacementStrength);

 output.positionWS = positionWS;

 output.normalWS = input.normalWS;
 output.uv = float3(input.uv, height); // Store the layer height in uv.z
 output.positionCS = CalculatePositionCSWithShadowCasterLogic(positionWS,
input.normalWS);
}

// 3 vertices per trianlge * max number of layers allowed by Unity
[maxvertexcount(3 * 24)]
void Geometry(triangle VertexOutput inputs[3], inout TriangleStream<GeometryOutput>
outputStream)
{
 // Initialize the output struct
 GeometryOutput output = (GeometryOutput)0;

 //For each layer
 for (int l = 0; l < _FurLayers; l++) {
 // The height percent
 float h = l / (float)(_FurLayers - 1);
 // For each point in the triangle
 for (int t = 0; t < 3; t++) {
 // Calculate the output data and add the vertex to the output stream
 SetupVertex(inputs[t], output, h);
 outputStream.Append(output);
 }
 // Each triangle is disconnected, so we need to call this to restart the triangle
strip
 outputStream.RestartStrip();
 }
}

Bachelor’s thesis - MODULE 6GST0XF101.2

104

// Fragment functions

half4 Fragment(GeometryOutput input) : SV_Target
{

 float2 uv = input.uv.xy;
 float height = input.uv.z;

 // Sample the two noise textures, applying their scale and offset
 float detailNoiseA = SAMPLE_TEXTURE2D(_DetailTextureA, sampler_DetailTextureA,
TRANSFORM_TEX(uv, _DetailTextureA)).r;
 float detailNoiseB = SAMPLE_TEXTURE2D(_DetailTextureB, sampler_DetailTextureB,
TRANSFORM_TEX(uv, _DetailTextureB)).r;
 // Combine the textures together using these scale variables. Lower values will
reduce a texture's influence
 detailNoiseA = 1 - (1 - detailNoiseA) * _TextureInfluenceA;
 detailNoiseB = 1 - (1 - detailNoiseB) * _TextureInfluenceB;
 // If detailNoise * smoothNoise is less than height, this pixel will be discarded by
the renderer
 clip(detailNoiseA * detailNoiseB - height);

 // If the code reaches this far, this pixel should render

#ifdef SHADOW_CASTER_PASS
 // If we're in the shadow caster pass, it's enough to return now. We don't care about
color
 return 0;
#else
 // Gather some data for the lighting algorithm
 InputData lightingInput = (InputData)0;
 lightingInput.positionWS = input.positionWS;
 lightingInput.normalWS = NormalizeNormalPerPixel(input.normalWS); // Renormalize the
normal to reduce interpolation errors
 lightingInput.viewDirectionWS = GetViewDirectionFromPosition(input.positionWS); //
Calculate the view direction
 lightingInput.shadowCoord = CalculateShadowCoord(input.positionWS, input.positionCS);
// Calculate the shadow map coord

 // Lerp between the two grass colors based on layer height
 float3 _diffuseColor = lerp(_BaseColor, _TopColor, height).rgb;

 //InputData inputData,
 //half3 albedo,
 //half metallic,
 //half3 specular,
 //half smoothness,
 //half occlusion,
 //half3 emission,
 //half alpha
 //return UniversalFragmentPBR(lightingInput, _diffuseColor, _metallic, _specular,
_smoothness, _occlusion, _emission, _alpha);
 return UniversalFragmentPBR(lightingInput, _diffuseColor, _metallic, _specular,
_smoothness, _occlusion, _emission, 1);

#endif

}

Bachelor’s thesis - MODULE 6GST0XF101.2

105

Appendix I: Common.hlsl code

#ifndef COMMON
#define COMMON

// Returns the view direction in world space
float3 GetViewDirectionFromPosition(float3 positionWS) {
 return normalize(GetCameraPositionWS() - positionWS);
}

// URP Helpers

// If this is the shadow caster pass, we also need this variable, which URP sets
#ifdef SHADOW_CASTER_PASS
float3 _LightDirection;
#endif

// Calculates the position in clip space
float4 CalculatePositionCSWithShadowCasterLogic(float3 positionWS, float3 normalWS) {
 float4 positionCS;

#ifdef SHADOW_CASTER_PASS
 // From URP's ShadowCasterPass.hlsl
 positionCS = TransformWorldToHClip(ApplyShadowBias(positionWS, normalWS,
_LightDirection));
#if UNITY_REVERSED_Z
 positionCS.z = min(positionCS.z, positionCS.w * UNITY_NEAR_CLIP_VALUE);
#else
 positionCS.z = max(positionCS.z, positionCS.w * UNITY_NEAR_CLIP_VALUE);
#endif
#else
 // This built in function transforms from world space to clip space
 positionCS = TransformWorldToHClip(positionWS);
#endif

 return positionCS;
}

// Calculates the shadow texture coordinate for lighting calculations
float4 CalculateShadowCoord(float3 positionWS, float4 positionCS) {
 // Calculate the shadow coordinate depending on the type of shadows currently in use
#if SHADOWS_SCREEN
 return ComputeScreenPos(positionCS);
#else
 return TransformWorldToShadowCoord(positionWS);
#endif
}

#endif

Bachelor’s thesis - MODULE 6GST0XF101.2

106

Appendix J: HLSLComplex.shader code

Shader "Custom/HLSLComplex" {
 Properties {

 [Header(Shell Property)][Space]
 [IntRange] _FurLayers("NumberOfShells", Range(2, 24)) = 24
 _ShellSize("Shell Size", range(0.01, 1.0)) = 1.0
 _ShellDirection("Shell Direction", vector) = (0, 0, 0, 0)
 _DisplacementStrength("Displacement Strenght", range(0.0, 0.99)) = 0.5

 [Space(20)][Header(Shell Parameters)][Space]
 _DetailTextureA("Detail Texture A", 2D) = "white" {} // Texture A used to clip
layers
 _TextureInfluenceA("Texture A Influence", Range(0, 1)) = 1 // The influence of
Texture A
 _DetailTextureB("Detail Texture B", 2D) = "white" {} // Texture B used to clip
layers
 _TextureInfluenceB("Texture B Influence", Range(0, 1)) = 1 // The influence of
Texture B

 [Space(20)][Header(Object Material)][Space(10)]
 [MainTexture] _BaseColor("Base Color", 2D) = "white" {}
 _TintColor("Tint Color", Color) = (0, 0.5, 0, 1)
 _TopColor("Top Color", Color) = (0, 1, 0, 1)
 _Occlusion("Occulsion", 2D) = "white" {}
 _OcclusionValue("Occulsion Value", Range(0, 1)) = 0
 _Smoothness("Roughness", 2D) = "white" {}
 _SmoothnessValue("Roughness Value", Range(0, 1)) = 0
 _Metalness("Metalness", 2D) = "white" {}
 _MetalnessValue("Metalness Value", Range(0, 1)) = 0
 _Emissive("Emissive", 2D) = "white" {}
 _EmissionTint("Emission Tint", Color) = (0, 0, 0, 0)

 }

 SubShader {

 Tags{"RenderType" = "Opaque" "RenderPipeline" = "UniversalPipeline"
"IgnoreProjector" = "True"}

 // Forward Lit Pass
 Pass {

 Name "ForwardLit"
 Tags{"LightMode" = "UniversalForward"}
 Cull Back

 HLSLPROGRAM
 // Signal this shader requires geometry function support
 #pragma prefer_hlslcc gles
 #pragma exclude_renderers d3d11_9x
 #pragma target 2.0
 #pragma require geometry

Bachelor’s thesis - MODULE 6GST0XF101.2

107

 // Lighting and shadow keywords
 #pragma multi_compile _ _MAIN_LIGHT_SHADOWS
 #pragma multi_compile _ _MAIN_LIGHT_SHADOWS_CASCADE
 #pragma multi_compile _ _ADDITIONAL_LIGHTS
 #pragma multi_compile _ _ADDITIONAL_LIGHT_SHADOWS
 #pragma multi_compile _ _SHADOWS_SOFT

 // Register our functions
 #pragma vertex Vertex
 #pragma geometry Geometry
 #pragma fragment Fragment

 // Incude our logic file
 #include "FurComplex.hlsl"

 ENDHLSL
 }

 Pass {

 Name "ShadowCaster"
 Tags {"LightMode" = "ShadowCaster"}

 HLSLPROGRAM
 // Signal this shader requires geometry function support
 #pragma prefer_hlslcc gles
 #pragma exclude_renderers d3d11_9x
 #pragma target 2.0
 #pragma require geometry

 // Support all the various light types and shadow paths
 #pragma multi_compile_shadowcaster

 // Register our functions
 #pragma vertex Vertex
 #pragma geometry Geometry
 #pragma fragment Fragment

 // A custom keyword to modify logic during the shadow caster pass
 #define SHADOW_CASTER_PASS

 #include "FurComplex.hlsl"

 ENDHLSL
 }
 }

}

Bachelor’s thesis - MODULE 6GST0XF101.2

108

Appendix K: FurComplex.hlsl code

#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
#include "Common.hlsl"

struct Attributes {
 float4 positionOS : POSITION;
 float3 normalOS : NORMAL;
 float4 tangentOS : TANGENT;
 float2 uv : TEXCOORD0;
};

struct VertexOutput {
 float3 positionWS : TEXCOORD0;
 float3 normalWS : TEXCOORD1;
 float2 uv : TEXCOORD2;
};

struct GeometryOutput {
 float3 uv : TEXCOORD0;
 float3 positionWS : TEXCOORD1;
 float3 normalWS : TEXCOORD2;
 float4 positionCS : SV_POSITION;
};

// Properties
float _ShellSize;
float4 _ShellDirection;
float _DisplacementStrength;
float _Curvature;

//Color properties
TEXTURE2D(_BaseColor); SAMPLER(sampler_BaseColor); float4 _BaseColor_ST;
float4 _TintColor;
float4 _TopColor;
half3 _Specular;
TEXTURE2D(_Occlusion); SAMPLER(sampler_Occlusion); float4 _Occlusion_ST;
half _OcclusionValue;
TEXTURE2D(_Smoothness); SAMPLER(sampler_Smoothness); float4 _Smoothness_ST;
half _SmoothnessValue;
TEXTURE2D(_Metalness); SAMPLER(sampler_Metalness); float4 _Metalness_ST;
half _MetalnessValue;
TEXTURE2D(_Emissive); SAMPLER(sampler_Emissive); float4 _Emissive_ST;
half3 _EmissionTint;

// Textures for the fur pattern
TEXTURE2D(_DetailTextureA); SAMPLER(sampler_DetailTextureA); float4 _DetailTextureA_ST;
float _TextureInfluenceA;
TEXTURE2D(_DetailTextureB); SAMPLER(sampler_DetailTextureB); float4 _DetailTextureB_ST;
float _TextureInfluenceB;

uint _FurLayers;

VertexOutput Vertex(Attributes IN) {

Bachelor’s thesis - MODULE 6GST0XF101.2

109

 VertexOutput output = (VertexOutput)0;

 VertexPositionInputs vertexInput = GetVertexPositionInputs(IN.positionOS.xyz);
 VertexNormalInputs normalInput = GetVertexNormalInputs(IN.normalOS, IN.tangentOS);
 output.positionWS = vertexInput.positionWS;
 output.normalWS = normalInput.normalWS;

 output.uv = IN.uv;
 return output;
}

void SetupVertex(in VertexOutput input, inout GeometryOutput output, float height) {

 float3 positionWS = input.positionWS + input.normalWS * (height * _ShellSize);

 positionWS -= _ShellDirection * (height * _ShellSize * _DisplacementStrength);

 output.positionWS = positionWS;

 output.normalWS = input.normalWS;
 output.uv = float3(input.uv, height);
 output.positionCS = CalculatePositionCSWithShadowCasterLogic(positionWS,
input.normalWS);
}

[maxvertexcount(3 * 24)]
void Geometry(triangle VertexOutput inputs[3], inout TriangleStream<GeometryOutput>
outputStream) {

 GeometryOutput output = (GeometryOutput)0;

 for (int l = 0; l < _FurLayers; l++) {
 float h = l / (float)(_FurLayers - 1);
 for (int t = 0; t < 3; t++)
 {
 SetupVertex(inputs[t], output, h);
 outputStream.Append(output);
 }

 outputStream.RestartStrip();
 }
}

half4 Fragment(GeometryOutput input) : SV_Target {

 float2 uv = input.uv.xy;
 float height = input.uv.z;

 float detailNoiseA = SAMPLE_TEXTURE2D(_DetailTextureA, sampler_DetailTextureA,
TRANSFORM_TEX(uv, _DetailTextureA)).r;
 float detailNoiseB = SAMPLE_TEXTURE2D(_DetailTextureB, sampler_DetailTextureB,
TRANSFORM_TEX(uv, _DetailTextureB)).r;

 detailNoiseA = 1 - (1 - detailNoiseA) * _TextureInfluenceA;
 detailNoiseB = 1 - (1 - detailNoiseB) * _TextureInfluenceB;

 clip(detailNoiseA * detailNoiseB - height);

Bachelor’s thesis - MODULE 6GST0XF101.2

110

#ifdef SHADOW_CASTER_PASS
 return 0;
#else

 InputData lightingInput = (InputData)0;
 lightingInput.positionWS = input.positionWS;
 lightingInput.normalWS = NormalizeNormalPerPixel(input.normalWS);
 lightingInput.viewDirectionWS = GetViewDirectionFromPosition(input.positionWS);
 lightingInput.shadowCoord = CalculateShadowCoord(input.positionWS, input.positionCS);

 float3 _diffuseColor = lerp(
 SAMPLE_TEXTURE2D(_BaseColor, sampler_BaseColor, TRANSFORM_TEX(uv, _BaseColor)) *
_TintColor,
 SAMPLE_TEXTURE2D(_BaseColor, sampler_BaseColor, TRANSFORM_TEX(uv, _BaseColor))
*_TopColor,
 height).rgb;
 half _occlusion = SAMPLE_TEXTURE2D(_Occlusion, sampler_Occlusion, TRANSFORM_TEX(uv,
_Occlusion)) * _OcclusionValue;
 half _smoothness = SAMPLE_TEXTURE2D(_Smoothness, sampler_Smoothness,
TRANSFORM_TEX(uv, _Smoothness)) * _SmoothnessValue;
 half _metallic = SAMPLE_TEXTURE2D(_Metalness, sampler_Metalness, TRANSFORM_TEX(uv,
_Metalness)) * _MetalnessValue;
 half3 _emissive = SAMPLE_TEXTURE2D(_Emissive, sampler_Emissive, TRANSFORM_TEX(uv,
_Emissive)) * _EmissionTint;

 //InputData inputData,
 //half3 albedo,
 //half metallic,
 //half3 specular,
 //half smoothness,
 //half occlusion,
 //half3 emission,
 //half alpha
 return UniversalFragmentPBR(lightingInput, _diffuseColor, _metallic, _Specular,
_smoothness, _occlusion, _emissive, 1);

#endif

}

Bachelor’s thesis - MODULE 6GST0XF101.2

111

Appendix L: HLSLGeom_Controller.cs script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.InputSystem;

public class HLSLGeom_Controller : MonoBehaviour
{
 private Vector3 displacementDirection = new Vector3(0, 0, 0);

 public Vector3 direction = new Vector3(0, 0, 0);

 public Material shellMaterial;

 // Start is called before the first frame update
 void Start()
 {
 shellMaterial = GetComponent<Renderer>().material;
 }

 // Update is called once per frame
 void Update()
 {
 float velocity = 1.0f;

 Vector3 currentPosition = this.transform.position;
 direction.Normalize();
 currentPosition += direction * velocity * Time.deltaTime;
 this.transform.position = currentPosition;

 displacementDirection += direction * Time.deltaTime * 10.0f;
 if (direction == Vector3.zero)
 displacementDirection.y += 10.0f * Time.deltaTime;

 if (displacementDirection.magnitude > 1) displacementDirection.Normalize();

 shellMaterial.SetVector("_ShellDirection", displacementDirection);
 }

 public void OnMove(InputValue value)
 {
 Vector2 movement = value.Get<Vector2>();
 direction.x = movement.x;
 direction.z = movement.y;
 }
 public void OnElevate(InputValue value)
 {
 float movement = value.Get<float>();
 direction.y = movement;
 }

}

Bachelor’s thesis - MODULE 6GST0XF101.2

112

Appendix M: HLSLComplex_Controller.cs script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.InputSystem;

public class HLSLComplex_Controller : MonoBehaviour
{
 private Vector3 displacementDirection = new Vector3(0, 0, 0);

 public Vector3 direction = new Vector3(0, 0, 0);

 public List<Renderer> shellRenderers = new List<Renderer>();

 // Update is called once per frame
 void Update()
 {
 float velocity = 1.0f;

 Vector3 currentPosition = this.transform.position;
 direction.Normalize();
 currentPosition += direction * velocity * Time.deltaTime;
 this.transform.position = currentPosition;

 displacementDirection += direction * Time.deltaTime * 10.0f;
 if (direction == Vector3.zero)
 displacementDirection.y += 10.0f * Time.deltaTime;

 if (displacementDirection.magnitude > 1) displacementDirection.Normalize();

 foreach(Renderer render in shellRenderers)
 render.material.SetVector("_ShellDirection", displacementDirection);
 }

 public void OnMove(InputValue value)
 {
 Vector2 movement = value.Get<Vector2>();
 direction.x = movement.x;
 direction.z = movement.y;
 }
 public void OnElevate(InputValue value)
 {
 float movement = value.Get<float>();
 direction.y = movement;
 }

}

Bachelor’s thesis - MODULE 6GST0XF101.2

113

Appendix N: FurSceneManager.cs script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;
using TMPro;

public class FurSceneManager : MonoBehaviour
{
 [SerializeField] private TMP_Text m_PreviousSceneText;
 [SerializeField] private TMP_Text m_CurrentSceneText;
 [SerializeField] private TMP_Text m_NextSceneText;

 [SerializeField] private SceneData m_SceneData;

 public void IncreaseScene()
 {
 m_SceneData.SceneIndex = GetNextSceneIndex();

 UpdateTexts();
 LoadSceneAtIndex(m_SceneData.SceneIndex);
 }

 public void DecreaseScene()
 {
 m_SceneData.SceneIndex = GetPreviousSceneIndex();

 UpdateTexts();
 LoadSceneAtIndex(m_SceneData.SceneIndex);
 }

 private void LoadSceneAtIndex(int index)
 {
 SceneManager.LoadScene(index);
 }

 private int GetNextSceneIndex()
 {
 if (m_SceneData.SceneIndex >= SceneManager.sceneCountInBuildSettings-1)
 return 0;
 else
 {
 return m_SceneData.SceneIndex + 1;
 }
 }

 private int GetPreviousSceneIndex()
 {
 if (m_SceneData.SceneIndex <= 0)
 return SceneManager.sceneCountInBuildSettings-1;
 else
 {
 return m_SceneData.SceneIndex - 1;
 }
 }

Bachelor’s thesis - MODULE 6GST0XF101.2

114

 private void UpdateTexts()
 {
 m_PreviousSceneText.text = GetSceneName(GetPreviousSceneIndex());
 m_CurrentSceneText.text = GetSceneName(m_SceneData.SceneIndex);
 m_NextSceneText.text = GetSceneName(GetNextSceneIndex());
 }

 private string GetSceneName(int sceneIndex)
 {
 string sceneName = SceneUtility.GetScenePathByBuildIndex(sceneIndex).ToString();
 sceneName = sceneName.Remove(0, sceneName.LastIndexOf('/')+1);
 sceneName = sceneName.Remove(sceneName.LastIndexOf('.'));
 return sceneName;
 }

 private void Awake()
 {
 m_SceneData.SceneIndex = SceneManager.GetActiveScene().buildIndex;
 UpdateTexts();
 }
}

Bachelor’s thesis - MODULE 6GST0XF101.2

115

Appendix O: SO_SceneData.cs script

using UnityEngine;

[CreateAssetMenu(fileName = "SceneData", menuName = "ScriptableObjects/SceneData", order
= 1)]
public class SceneData : ScriptableObject
{
 public int SceneIndex;

}

Appendix P: DataExtractor.cs script

using Unity.Profiling;
using UnityEngine;
using System.IO;
using UnityEditor;
using UnityEngine.InputSystem;
using UnityEngine.SceneManagement;

public class DataExtractor : MonoBehaviour
{

 FrameTiming[] m_FrameTimings = new FrameTiming[1];
 double[] m_gpuFrameTimes = new double[1000];

 bool isMeasuring = false;
 int m_DataCount = 0;

 string sceneName;

 [SerializeField] int m_DataToCollect = 1000;
 [SerializeField] TextAsset m_TextAsset;

 private void Start()
 {
 sceneName =
SceneUtility.GetScenePathByBuildIndex(SceneManager.GetActiveScene().buildIndex).ToString(
);
 sceneName = sceneName.Remove(0, sceneName.LastIndexOf('/') + 1);
 sceneName = sceneName.Remove(sceneName.LastIndexOf('.'));
 }
 void Update()
 {
 if (isMeasuring && m_DataCount < m_DataToCollect)
 {
 FrameTimingManager.CaptureFrameTimings();
 var ret = FrameTimingManager.GetLatestTimings((uint)m_FrameTimings.Length,
m_FrameTimings);
 if (ret > 0)
 {
 {
 //Frame capture logic
 //Debug.Log(m_FrameTimings[0].gpuFrameTime);

Bachelor’s thesis - MODULE 6GST0XF101.2

116

 m_gpuFrameTimes[m_DataCount] = m_FrameTimings[0].gpuFrameTime;
 m_DataCount++;
 }
 }
 }
 if(m_DataCount >= m_DataToCollect && isMeasuring)
 {
 EditorUtility.SetDirty(m_TextAsset);
 for (int i = 0; i < m_DataCount; i++)
 {
 File.AppendAllText(AssetDatabase.GetAssetPath(m_TextAsset),
m_gpuFrameTimes[i].ToString() + "\n");
 }

 Debug.Log("Data for: " + sceneName + " taken");
 isMeasuring = false;
 }
 }

 public void OnMeasure()
 {
 isMeasuring = true;
 Debug.Log("Measuring started on scene: " + sceneName);
 }

}

Appendix Q: Extracted Data spreadsheet

MP_Data.xlsx

